1000 resultados para Classificação supervisionada de imagens


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imagens do sensor TM/Landsat-5 referentes às bandas de TM1 a TM5 e TM7 do município de Altamira-PA, Brasil, da passagem de 20/7/1991, modificadas para 60, 100, 120, 200 e 250 m, foram utilizadas para avaliar a influência da resolução espacial na identificação de floresta, capoeira nova, capoeira madura e não-floresta. Mapas temáticos (um para cada resolução espacial) foram elaborados, considerando a aplicação de um algoritmo de classificação digital Bhattacharya (supervisionado), seguido da interpretação visual. A área de cada uma dessas categorias foi determinada em cada um dos mapas temáticos, tomando as imagens com 30 m de resolução espacial como referência. A exatidão de mapeamento foi avaliada, utilizando a exatidão global, o índice kappa e o índice Tau. Verificou-se que: a) as maiores discrepâncias em termos quantitativos ocorreram nos mapas gerados a partir das imagens com 200 m de resolução espacial; b) as categorias que dominavam a cena em termos espectrais e espaciais aumentaram à medida que a resolução espacial foi degradada; c) os mapas elaborados a partir de imagens com resolução espacial de 200 m apresentaram ligeira confusão na identificação dos temas; e d) a confusão espectral entre os temas não apresentou tendência linear com a gradativa degradação da resolução espectral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta o mapeamento da cobertura vegetal da região da Floresta Nacional do Tapajós (FNT) no Pará, realizado por imagens multitemporais do satélite Landsat. Para a validação do mapeamento, foram utilizadas imagens de videografia aérea e dados de levantamento de campo. Através da análise da matriz de confusão, foram observados uma exatidão global de classificação de 84,5% e um índice kappa de 80,9%. O uso dos mosaicos de videografia aérea e dos pontos de levantamento de campo, dentro de um sistema de informação geográfica, permitiu caracterizar e avaliar a qualidade do mapeamento da região da FNT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A indústria de madeira tem dispensado especial atenção às etapas de classificação e seleção de madeira serrada. Sistemas de Visão Artificial têm sido propostos para automação dessas etapas na indústria. A identificação de características apropriadas para discriminar os defeitos da madeira em imagens digitais é um dos maiores desafios no desenvolvimento desta tecnologia. O objetivo deste trabalho foi avaliar, por meio de técnicas de análise multivariada, a capacidade de discriminar defeitos em tábuas de eucalipto, utilizando-se as características de percentis de imagens coloridas. Foram realizadas análises discriminantes linear e quadrática para classificação de defeitos e madeira limpa em imagens digitais de tábuas de eucaliptos. As características de percentis do histograma das bandas do vermelho, verde e azul, retiradas de dois tamanhos de blocos de imagens, foram utilizadas para desenvolvimento e teste das funções discriminantes. Foram usados 492 blocos, contendo os 12 defeitos estudados e madeira limpa, retirados das imagens de 40 tábuas amostradas aleatoriamente. As características foram analisadas com seus valores originais, escores dos componentes principais e escores das variáveis canônicas. Os menores erros globais de classificação foram 19 e 24% para funções discriminantes lineares com os escores das variáveis canônicas para tamanho de bloco de 64 x 64 e 32 x 32 pixels, respectivamente. Tendo em vista a magnitude desses erros, as características de percentis foram consideradas adequadas para discriminar defeitos e madeira limpa em imagens digitais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Análises técnica e econômica foram realizadas em imagens dos sensores IKONOS, TM/Landsat 5, ETM+/Landsat 7 e CCD/CBERS, objetivando a verificação da viabilidade destas como base de dados em projetos de reforma agrária. Essas análises efetuadas e a situação de mercado indicaram que a imagem IKONOS apresenta excelente desempenho técnico, mas o custo de aquisição inviabiliza sua utilização como base de dados para a reforma agrária. A imagem do Landsat 7, com baixo custo de aquisição, apresentou grande viabilidade técnica para fins de reforma agrária. No entanto, a perda do contato com a plataforma Landsat 7 inviabilizou a compra de novas imagens do sensor ETM+. A imagem CCD/CBERS apresentou a segunda maior similaridade com a verdade de campo e o menor índice Kappa para a classificação. Apesar do baixo índice de exatidão para a classificação, as análises de custo, o lançamento do CBERS-2 e a possibilidade de correção dos problemas de radiometria podem tornar as imagens da plataforma CBERS-2 concorrentes de peso no mercado e, ainda, preencher a lacuna deixada pela perda do Landsat 7. A imagem do Landsat 5 apresentou o mais baixo desempenho técnico nas análises efetuadas. Entretanto, seu potencial como base de dados é amplamente reconhecido pelo INCRA, que ainda utiliza tais imagens. O declínio da vida útil do Landsat-5 atribui mais importância ao lançamento do CBERS-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O estudo teve como objetivos elaborar o mapa de uso da terra e diagnosticar, em nível de paisagem, os fragmentos de vegetação florestal nativa por meio da classificação visual da imagem do satélite IKONOS II. A pesquisa foi desenvolvida na bacia hidrográfica do rio Alegre, situada no extremo sul do Estado do Espírito Santo, Brasil. Foram mapeadas 12 classes de uso da terra, destacando-se 475 fragmentos florestais. As classes cafezal (2.086,2 ha), pastagem (14.130,1 ha) e fragmento florestal (2.978,9 ha) ocuparam 92,16% (19.195,2 ha) da área total da bacia, que é de 20.819,8 ha. A maioria dos fragmentos florestais possui formas fortemente alongadas e área média de 6,3 ha. Também se constatou que a maior parte está sujeita a um elevado nível de perturbação, com 452 e 166 fragmentos florestais vizinhos às classes pastagem e cafezal, respectivamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar o uso de índices espectrais, retirados de imagens digitais, para discriminar diferentes doses de N no feijoeiro. O trabalho, conduzido em vasos de 8 dm³, teve cinco tratamentos (0; 50; 100; 150 e 200 kg de N ha-1), com dez repetições. As imagens foram adquiridas aos 30; 40 e 50 dias após a emergência. Foram desenvolvidas funções discriminantes quadráticas, tendo como vetores de entrada as médias dos "pixels" de diferentes combinações dos quatro índices espectrais testados. Três diferentes tamanhos de blocos de imagem foram testados 9 x 9; 20 x 20 e 40 x 40 "pixels". Os melhores resultados foram alcançados pelos blocos de 9 x 9 e 20 x 20 "pixels", apresentando classificação 94; 96 e 96% superior à classificação ao acaso para os blocos 9 x 9 "pixels" e 92; 94 e 94% para os blocos 20x20 "pixels" aos 30; 40 e 50 dias após a emergência, respectivamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O uso operacional de imagens de satélites de sensoriamento remoto para mapear lavouras de café em grandes áreas, para fins de obtenção de estatísticas agrícolas confiáveis e oportunas, ainda se encontra em desenvolvimento. Diversos são os fatores que dificultam a correta identificação e mapeamento do parque cafeeiro. Contudo, os avanços tecnológicos observados nos últimos anos em termos de aquisição de imagens com melhor qualidade e em maior quantidade, bem como o desenvolvimento de novas ferramentas de análise, propiciam o desenvolvimento de um método operacional que pode contribuir na formação das estatísticas agrícolas oficiais do café no Brasil. Neste sentido, o presente trabalho tem por objetivo relatar a metodologia e apresentar os resultados do mapeamento das áreas cultivadas com café nos Estados de Minas Gerais e São Paulo, utilizando imagens de sensoriamento remoto e técnicas de geoprocessamento. A abordagem metodológica consiste em quatro fases: a) restauração das imagens e georreferenciamento; b) classificação não supervisionada; c) interpretação visual na tela do computador para minimizar erros de omissão e inclusão, e d) determinação da área cultivada com café. Os resultados indicaram que a metodologia utilizada foi adequada para o mapeamento das lavouras de café de Minas Gerais e São Paulo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, verificou-se a aderência de técnicas de mineração de dados voltadas para problemas de classificação de dados na identificação automatizada de áreas cultivadas com cana-de-açúcar, em imagens do satélite Landsat 5/TM. Para essa verificação, foram estudadas imagens de áreas cultivadas com cana-de-açúcar em três fases fenológicas diferentes. Os pixels foram convertidos em valores de refletância de superfície, nas vizinhanças das cidades de Araras, São Carlos e Araraquara, no Estado de São Paulo. Foram gerados cinco modelos de árvores de decisão binária, induzidos pelo algoritmo C4.5, em que todos produziram taxas de acerto superiores a 90%. A introdução de atributos de textura trouxe ganhos significativos na acurácia do modelo de classificação e contribuiu para melhorar a distinção de áreas cultivadas com cana-de-açúcar em meio a tipos diversos de cobertura do solo, como solo exposto, área urbana, lagos e rios. Os índices de vegetação mostraram-se relevantes na distinção da fase e do estado fenológico das culturas. Os resultados reforçam o potencial forte das árvores de decisão no processo de classificação e identificação de áreas cultivadas com cana-de-açúcar, em diferentes cidades produtoras, no Estado de São Paulo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJETIVOS: as melhorias tecnológicas na qualidade da imagem têm aumentado a importância da ultra-sonografia no estudo das patologias mamárias. A necessidade de padronização para caracterizar, descrever e emitir laudos na análise das imagens motivaram o desenvolvimento de um sistema de classificação de laudos ecográficos mamários. MÉTODOS: o sistema de classificação proposto agrupou as imagens ecográficas mamárias em cinco classes: I - normal, II - benigna, III -indeterminada, IV - suspeita, V - altamente suspeita. As características morfológicas ecográficas utilizadas para a descrição das imagens foram: forma, limites, contorno, ecogenicidade, ecotextura, ecotransmissão, orientação e sinais secundários. O teste padrão, numa casuística de 450 lesões, foi considerado o seguimento ecográfico das lesões por período de 6 a 24 meses e a histopatologia da peça cirúrgica nos casos operados. RESULTADOS: a classificação ecográfica mamária para o diagnóstico de câncer de mama apresentou sensibilidade de 90,2% (IC: 82,8-94,9%) e especificidade de 96,2% (IC: 94,0-97,6%) O valor preditivo positivo foi de 84,1% (IC: 76,0-89,9%) e o valor preditivo negativo foi de 97,8% (IC: 95,9-98,9%), alcançando acurácia de 95,1%. CONCLUSÕES: a adoção do sistema de classificação ecográfica resulta na uniformidade e otimização dos laudos. Facilita ainda a comparação com a clínica, com os exames histopatológicos e de imagem mamária, evitando procedimentos desnecessários, conduzindo a condutas terapêuticas mais adequadas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este artigo trata do problema de classificação do risco de infestação por plantas daninhas usando técnicas geoestatísticas, análise de imagens e modelos de classificação fuzzy. Os principais atributos utilizados para descrever a infestação incluem a densidade de sementes, bem como a sua extensão, a cobertura foliar e a agressividade das plantas daninhas em cada região. A densidade de sementes reflete a produção de sementes por unidade de área, e a sua extensão, a influência das sementes vizinhas; a cobertura foliar indica a extensão dos agrupamentos das plantas daninhas emergentes; e a agressividade descreve a porcentagem de ocupação de espécies com alta capacidade de produção de sementes. Os dados da densidade de sementes, da cobertura foliar e da agressividade para as diferentes regiões são obtidos a partir de simulação com modelos matemáticos de populações. Neste artigo propõe-se um sistema de classificação fuzzy utilizando os atributos descritos para inferir os riscos de infestação de regiões da cultura por plantas daninhas. Resultados de simulação são apresentados para ilustrar o uso desse sistema na aplicação localizada de herbicida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta um modelo de metadados para descrever e recuperar imagens médicas na Web. As classes pertencentes ao modelo viabilizam a descrição de imagens de várias especialidades médicas, incluindo suas propriedades, seus componentes e as relações existentes entre elas. Uma das propriedades que o modelo incorpora é a classificação internacional de doenças, versão 10 (CID-10). O modelo de metadados proposto, inspirado em classes, favorece a especialização e sua implementação na arquitetura de metadados RDF. O modelo serviu de base para a implementação de um protótipo denominado de Sistema MedISeek (Medical Image Seek) que permite a usuários autorizados: descrever, armazenar e recuperar imagens na Web. Além disto, é sugerida uma estrutura persistente apropriada de banco de dados para armazenamento e recuperação dos metadados propostos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com o advento dos sensores hiperespectrais se tornou possível em sensoriamento remoto, uma serie de diferentes aplicações. Uma delas, é a possibilidade de se discriminar classes com comportamentos espectrais quase idênticas. Porém um dos principais problemas encontrados quando se trabalha com dados de alta dimensionalidade, é a dificuldade em estimar os inúmeros parâmetros que se fazem necessários. Em situações reais é comum não se ter disponibilidade de tamanho de amostra suficiente, por exemplo, para se estimar a matriz de covariâncias de forma confiável. O sensor AVIRIS fornece uma riqueza de informações sobre os alvos, são 224 bandas cobrindo o espectro eletromagnético, o que permite a observação do comportamento espectral dos alvos de forma muito detalhada. No entanto surge a dificuldade de se contar com uma amostra suficiente para se estimar a matriz de covariâncias de uma determinada classe quando trabalhamos com dados do sensor AVIRIS, para se ter uma idéia é preciso estimar 25.200 parâmetros somente na matriz de covariâncias, o que necessitaria de uma amostra praticamente impraticável na realidade. Surge então a necessidade de se buscar formas de redução da dimensionalidade, sem que haja perda significativa de informação. Esse tipo de problema vem sendo alvo de inúmeros estudos na comunidade acadêmica internacional. Em nosso trabalho pretendemos sugerir a redução da dimensionalidade através do uso de uma ferramenta da geoestatística denominada semivariograma. Investigaremos se os parâmetros calculados para determinadas partições do transecto de bandas do sensor AVIRIS são capazes de gerar valores médios distintos para classes com comportamentos espectrais muito semelhantes, o que por sua vez, facilitaria a classificação/discriminação destas classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A textura é um atributo ainda pouco utilizado no reconhecimento automático de cenas naturais em sensoriamento remoto, já que ela advém da sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil a sua quantificação. A morfologia matemática, através de operações como erosão, dilatação e abertura, permite decompor uma imagem em elementos fundamentais, as primitivas texturais. As primitivas texturais apresentam diversas dimensões, sendo possível associar um conjunto de primitivas com dimensões semelhantes, em uma determinada classe textural. O processo de classificação textural quantifica as primitivas texturais, extrai as distribuições das dimensões das mesmas e separa as diferentes distribuições por meio de um classificador de máxima-verossimilhança gaussiana. O resultado final é uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os recentes avanços na tecnologia de sensores tem disponibilizado imagens em alta dimensionalidade para fins de sensoriamento Remoto. Análise e interpretação dos dados provenientes desta nova geração de sensores apresenta novas possibilidades e também novos desafios. Neste contexto,um dos maiores desafios consiste na estimação dos parâmetros em um classificador estatístico utilizando-se um número limitado de amostras de treinamento.Neste estudo,propõe-se uma nova metodologia de extração de feições para a redução da dimensionalidadedos dados em imagens hiperespectrais. Essa metodologia proposta é de fácil implementação e também eficiente do ponto de vista computacional.A hipótese básica consiste em assumir que a curva de resposta espectral do pixel, definida no espaço espectral, pelos contadores digitais (CD's) das bandas espectrais disponíveis, pode ser substituída por um número menor de estatísticas, descrevendo as principais característicasda resposta espectral dos pixels. Espera-se que este procedimento possa ser realizado sem uma perda significativa de informação. Os CD's em cada banda espectral são utilizados para o cálculo de um número reduzido de estatísticas que os substituirão no classificador. Propõe-se que toda a curva seja particionada em segmentos, cada segmento sendo então representado pela respectiva média e variância dos CD's. Propõem-se três algoritmos para segmentação da curva de resposta espectral dos pixels. O primeiro utiliza um procedimento muito simples. Utilizam-se segmentos de comprimento constante, isto é, não se faz nenhuma tentativa para ajustar o comprimento de cada segmento às características da curva espectral considerada. Os outros dois implementam um método que permite comprimentos variáveis para cada segmento,onde o comprimentodos segmentos ao longo da curva de resposta espectral é ajustado seqüencialmente.Um inconveniente neste procedimento está ligado ao fato de que uma vez selecionadauma partição, esta não pode ser alterada, tornando os algoritmos sub-ótimos. Realizam-se experimentos com um classificador paramétrico utilizando-se uma imagem do sensor AVIRIS. Obtiveram-se resultados animadores em termos de acurácia da classificação,sugerindo a eficácia dos algoritmos propostos.