940 resultados para Circulation pulmonaire
Resumo:
Semi-enclosed bays in upwelling regions are exposed to forcing related to winds, currents and buoyancy over the shelf. The influence of this external forcing is moderated by factors such as connectivity to the open ocean, shelter by surrounding topography, dimensions of the bay, and freshwater outflows. Such bays, preferred locations for ports, mariculture, marine industry, recreational activities and coastal settlement, present a range of characteristics, understanding of which is necessary to their rational management. Observations in such a semi-enclosed bay, the Ria de Vigo in Spain, are used to characterize the influence of upwelling and downwelling pulses on its circulation. In this location, near the northern limit of the Iberian upwelling system, upwelling events dominate during a short summer season and downwelling events the rest of the year. The ria response to the external forcing is central to nutrient supply and resultant plankton productivity that supports its high level of cultured mussel production. Intensive field studies in September 2006 and June 2007 captured a downwelling event and an upwelling event, respectively. Data from eight current profiler moorings and boat-based MiniBat/ADCP surveys provided an unprecedented quasi-synoptic view of the distribution of water masses and circulation patterns in any ria. In the outer ria, circulation was dominated by the introduction of wind-driven alongshore flow from the external continental shelf through the ria entrances and its interaction with the topography. In the middle ria, circulation was primarily related to the upwelling/downwelling cycle, with a cool, salty and dense lower layer penetrating to the inner ria during upwelling over the shelf. A warmer, lower salinity and less dense surface layer of coastal waters flowed inward during downwelling. Without external forcing, the inner ria responded primarily to tides and buoyancy changes related to land runoff. Under both upwelling and downwelling conditions, the flushing of the ria involved shelf responses to wind pulses. Their persistence for a few days was sufficient to allow waters from the continental shelf to penetrate the innermost ria. Longer term observations supported by numerical modeling are required to confirm the generality of such flushing events in the ria and determine their typical frequency, while comparative studies should explore how these scenarios fit into the range of conditions experienced in other semi-enclosed bays.
Resumo:
This article examines the transnational circulation of South Korean animation, with a particular focus on the production and release of "Wonderful Days" in Korea and around the world, arguing that Korean animation's international identity is defined in relation to the more visible Japanese cinema.
Resumo:
We assessed whether quantitative analysis of Doppler flow velocity waveforms is able to identify subclinical microvascular abnormalities in SLE and whether eigenvector analysis can detect changes not detectable using the resistive index (RI). Fifty-four SLE patients with no conventional cardiovascular risk factors, major organ involvement or retinopathy were compared to 32 controls. Flow velocity waveforms were obtained from the ophthalmic artery (OA), central retinal artery (CRA) and common carotid artery (CA). The waveforms were analysed using eigenvector decomposition and compared between groups at each arterial site. The RI was also determined. The RI was comparable between groups. In the OA and CRA, there were significant differences in the lower frequency sinusoidal components (P <0.05 for each component). No differences were apparent in the CA between groups. Eigenvector analysis of Doppler flow waveforms, recorded in proximity of the terminal vascular bed, identified altered ocular microvascular haemodynamics in SLE. Altered waveform structure could not be identified by changes in RI, the traditional measure of downstream vascular resistance. This analytical approach to waveform analysis is more sensitive in detecting preclinical microvascular abnormalities in SLE. It may hold potential as a useful tool for assessing disease activity, response to treatment, and predicting future vascular complications.
Resumo:
http://bjo.bmj.com/content/suppl/2001/06/20/85.7.DC1 Leukocyte-endothelial cell interactions play an important role in the pathogenesis of various types of retinal vascular diseases, including diabetes, uveitis, and ischemic lesions. Over the last few years, several methods have been devised in which the scanning laser ophthalmoscope (SLO) is used to study leukocyte-endothelial interactions in vivo [1,2]. Previously we reported a noninvasive in vivo leukocyte tracking method using the SLO in rat. In this method, a nontoxic fluorescent agent (6-carboxyfluorescein diacetate, CFDA) was used to label leukocytes in vitro. Leukocyte velocities within the retinal and choroidal circulations were be quantified simultaneously [3]. None of the previous methods has been developed for imaging the murine fundus, mainly due to problems arising from the small size of the mouse eye. However, there are many advantages of using a murine model to study retinal vascular diseases such as enhanced genetic definition, increased range of reagents available for immunological studies and cost reduction. We have developed our SLO method such that we can track leukocytes in the mouse retinal and choroidal circulations.
Resumo:
The aim of this paper is to analyze the role of the pressure head, i.e., the difference of total pressure forces acting on the Indonesian seas waters from the western Pacific and the eastern Indian Ocean, in driving the Indonesian Throughflow (ITF) and in determining the total transport of the ITF. These questions have been discussed in the literature but no consensus has been reached. A regional model of the Indonesian seas circulation has been developed that properly resolves all major topographic features in the region. The results of model runs have been used to calculate all components of the overall momentum balance. The estimates disclose that the dynamical balance is primarily between the volume integrated Coriolis acceleration, pressure gradient and the area integral of local wind stress. It is shown that consideration of components of momentum balance in the direction of the outflow through the Indian Ocean port leads to the formulation of a diagnostic relation between total inflow transports due to the Mindanao and New Guinea Coastal Currents and the external pressure head, internal pressure head, bottom form stress, and area integrated wind stress. Based on this relation, it is concluded that the external pressure head is not the major driving force of the ITF, which is why there is no unique relation between the total transport of the ITF and the external pressure head. However, Wyrtki's suggestion to monitor the variability of the total transport of the ITF by measurement of the sea-surface-height difference between the western Pacific and the eastern Indian Ocean is validated.