960 resultados para Chondrogenic differentiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell–cell and cell–matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Female sexual functioning is affected by a range of factors including motivation, psychological well-being, and relationship issues. In understanding female sexual dysfunction (FSD), there has been a tendency to privilege diagnostic and medical over relationship issues. Aim To investigate the association between women’s experience of intimacy in close relationships - operationalized in terms of attachment and degree of differentiation of self - and FSD. Methods Two hundred and thirty sexually active Australian women responded to an invitation to complete a set of validated scales to assess potential correlates of sexual functioning. Main Outcome Measures The Female Sexuality Function Index, the Experiences in Close Relationships Scale, the Differentiation of Self Inventory, as well as a set of study-specific questions were subject to hierarchical multiple regression analyses Results Relational variables of attachment avoidance and to a lesser degree, attachment anxiety were associated with FSD. Participants with lower levels of differentiation of self were more likely to report sexual difficulties. The inability to maintain a sense of self in the presence of intimate others was the strongest predictors of sexual problems. A history of sexual abuse in adulthood and higher levels of psychological distress were also associated with sexual difficulties. Conclusions The findings provide support for a relational understanding of female sexual functioning. Attachment avoidance, attachment anxiety, and degree of differentiation of self are shown to be associated with sexual difficulties. The findings support the need to focus on relational and psychological factors in women’s experience of sex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen breast cancer cell lines were examined for expression of markers of epithelial and fibroblastic differentiation: E-cadherin, desmoplakins, ZO- 1, vimentin, keratin and β1 and β4 integrins. The cell lines were distributed along a spectrum of differentiation from epithelial to fibroblastic phenotypes. The most well-differentiated, epithelioid cell lines contained proteins characteristic of desmosomal, adherens and tight junctions, were adherent to one another on plastic and in the basement membrane matrix Matrigel and were keratin-positive and vimentin-negative. These cell lines were all weakly invasive in an in vitro chemoinvasion assay. The most poorly-differentiated, fibroblastic cell lines were E-cadherin-, desmoplakin- and ZO-1-negative and formed branching structures in Matrigel. They were vimentin-positive, contained only low levels of keratins and were highly invasive in the in vitro chemoinvasion assay. Of all of the markers analyzed, vimentin expression correlated best with in vitro invasive ability and fibroblastic differentiation. In a cell line with unstable expression of vimentin, T47D(CO), the cells that were invasive were of the fibroblastic type. The differentiation markers described here may be useful for analysis of clinical specimens and could potentially provide a more precise measure of differentiation grade yielding more power for predicting prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade we have come to understand that the growth of cancer cells in general and of breast cancer in particular depends, in many cases, upon growth factors that will bind to and activate their receptors. One of these growth factor receptors is the erbB-2 protein which plays an important role in the prognosis of breast cancer and is overexpressed in nearly 30% of human breast cancer patients. While evidence accumulates to support the relationship between erbB-2 overexpression and poor overall survival in breast cancer, understanding of the biological consequence(s) of erbB-2 overexpression remains elusive. Our recent discovery of the gp30 has allowed us to identify a number of related but distinct biological endpoints which appear responsive to signal transduction through the erbB-2 receptor. These endpoints of growth, invasiveness, and differentiation have clear implications for the emergence, maintenance and/or control of malignancy, and represent established endpoints in the assessment of malignant progression in breast cancer. We have shown that gp30 induces a biphasic growth effect on cells with erbB-2 over-expression. We have recently determined the protein sequence of gp30 and cloned its full length cDNA sequence. We have also cloned two additional forms to the ligand, that are believed to be different isoforms. We are currently expressing the different forms in order to determine their biological effects. To elucidate the cellular mechanisms underlying cell growth inhibition by gp30, we tested the effect of this ligand on cell growth and differentiation of the human breast cancer cells which overexpress erbB-2 and cells which express low levels of this protooncogene. High concentrations of ligand induced differentiation of cells overexpressing erbB-2, as measured by inhibition of cell growth, and increased synthesis of milk components, and modulation of E-cadherin and up- regulation of c-jun and c-fos. These findings indicate that ligand-induced growth inhibition in cells overexpressing erbB-2 is associated with an apparent induction of differentiation. The availability of gp30 derived synthetic peptides and its full cDNAs provides tools necessary to acquire a better understanding of the mechanism of action of the this ligands and the erbB-2 receptor in breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to increasing clinical demand for adipose tissue, a suitable scaffold for engineering adipose tissue constructs is needed. In this study, we have developed a three-dimensional (3-D) culture system using bone marrow-derived mesenchymal stem cells (BM-MSC) and a Pluronic F-127 hydrogel scaffold as a step towards the in vitro tissue engineering of fat. BM-MSC were dispersed into a Pluronic F-127 hydrogel with or without type I collagen added. The adipogenic differentiation of the BM-MSC was assessed by cellular morphology and further confirmed by Oil Red O staining. The BM-MSC differentiated into adipocytes in Pluronic F-127 in the presence of adipogenic stimuli over a period of 2 weeks, with some differentiation present even in absence of such stimuli. The addition of type I collagen to the Pluronic F-127 caused the BM-MSC to aggregate into clumps, thereby generating an uneven adipogenic response, which was not desirable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is accepted that the accelerated differentiation of tissue cells on bioactive materials is of great importance to regenerate the lost tissues. It was previously reported that lithium (Li) ions could enhance the in vitro proliferation and differentiation of retinoblastoma cells and endometrium epithelia by activating the Wnt canonical signalling pathway. It is interesting to incorporate Li ions into bioactive ceramics, such as β-tricalcium phosphate (Li-β-TCP), in order to stimulate both osteogenic and cementogenic differentiation of different stem cells for the regeneration of bone/periodontal tissues. Therefore, the aim of this study was to investigate the interactions of human periodontal ligament cells (hPDLCs) and human bone marrow stromal cells (hBMSCs) with Li-β-TCP bioceramic bulks and their ionic extracts, and further explore the osteogenic and cementogenic stimulation of Li-β-TCP bioceramics and the possible molecular mechanisms. The results showed that Li-β-TCP bioceramic disks supported the cell attachment and proliferation, and significantly enhanced bone/cementum-related gene expression, Wnt canonical signalling pathway activation for both hPDLCs and hBMSCs, compared to conventional β-TCP bioceramic disks without Li. The release of Li from Li-β-TCP powders could significantly promote the bone/cementum-related gene expression for both hPDLCs and hBMSCs compared to pure β-TCP extracts without Li release. Our results suggest that the combination of Li with β-TCP bioceramics may be a promising method to enhance bone/cementum regeneration as Li-β-TCP possesses excellent in vitro osteogenic and cementogenic stimulation properties by inducing bone/cementum-related gene expression in both hPDLCs and hBMSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a contingency view regarding the effects of structural differentiation and integration on levels of corporate entrepreneurship. Integrating notions of benefits and costs resulting from integration with structural contingency theory, we argue that the joint effects of structural differentiation and integration on corporate entrepreneurship levels are moderated by organizational size and environmental dynamism. Our findings from a time-separated sample demonstrate that in smaller organizations and more dynamic environments, the positive effects of integration on the structural differentiation-corporate entrepreneurship relationship strongly diminish. As such, with this research we begin to identify contingencies that influence the corporate entrepreneurship levels observed among firms striving to balance the needs for structural differentiation and integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – There is limited evidence on how differences in economic environments affect the demand for and supply of auditing. Research on audit pricing has mainly focused on large client markets in developed economies; in contrast, the purpose of this paper is to focus on the small client segment in the emerging economy of Thailand which offers a choice between auditors of two different qualities. Design/methodology/approach – This paper is based on a random stratified sample of small clients in Thailand qualifying for audit exemption. The final sample consists of 1,950 firm-year observations for 2002-2006. Findings – The authors find evidence of product differentiation in the small client market, suggesting that small firms view certified public accountants as superior and pay a premium for their services. The authors also find that audit fees have a positive significant association with leverage, metropolitan location and client size. Audit risk and audit opinion are not, however, significantly associated with audit fees. Furthermore, the authors find no evidence that clients whose financial year ends in the auditors’ busy period pay significantly higher audit fees, and auditors engage in low-balling on initial engagements to attract audit clients. Research limitations/implications – The research shows the importance of exploring actual decisions regarding audit practice and audit pricing in different institutional and organizational settings. Originality/value – The paper extends the literature from developed economies and large/listed market setting to the emerging economy and small client market setting. As far as the authors are aware, this is the first paper to examine audit pricing in the small client market in an emerging economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8–14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.