122 resultados para Chondrite
Resumo:
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate d34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate d34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.
Resumo:
During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.