912 resultados para Chloride ion diffusion coefficient
Resumo:
Ferrocenebutyrate-intercalated layered double hydroxide (FcLDH) was prepared by the coprecipitation method and characterized by PXRD, FTIR, TEM and elemental analysis. FcLDH nanoparticles in deionized water were deposited onto the surface of graphite powder to yield graphite powder-supported FcLDH, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing the electroactive ferrocenyl group. Cyclic voltammetric study revealed that peak currents of the FcLDH-modified electrode were diffusion-con trolled in 0.1 mol l(-1) KCl aqueous solution. In addition, the formal potential of the modified electrode is related to the activity of chloride ion with a Nernst slope of 56 mV per decade.
Resumo:
The heterogeneous electron transfer rate constant (k(s)) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (tau(L)) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k(s) varies inversely with tau(L); k(s), is proportional to D of DMFc. Both D and k(s) of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k(s) of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte.
Resumo:
The diffusion coefficients (D) of quinhydrone were estimated in polymer electrolytes by using non-steady-state chronoamperometry and steady-state current voltammetry. The D values have been estimated in polyethylene glycol (PEG) containing different concentrations, and cations of supporting electrolytes, and in different solvents over a range of temperatures. The dependencies of electroactive probe diffusion coefficients on temperature, supporting electrolyte concentration and polymer chain length are discussed. The results show that D increases with increasing temperature and decreasing concentration of supporting electrolyte. The diffusion coefficient depends strongly on the length of polymer chain and decreases sharply with increasing polymer chain length. The contribution of electron self-exchange has been explored and it seems to be negligible here. (C) 1998 Elsevier Science S.A.
Resumo:
The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.
Resumo:
The mass transport dynamics of Ferrocene in polyelectrolyte polyethylene glycol lithium perchlorate (PEG . LiClO4) was studied by using chronoamperometry at a microdisk electrode. Chronoamperometry is a powerful method for the study of mass transport in polyelectrolyte, it has many advantages over the conventional methods at a microelectrode and the steady-state method at an ultramicroelectrode. By using this method the apparent diffusion coefficient D-app and concentration C-a of the electroactive species, can be estimated from a single experiment without previous knowledge of either one. We have estimated D-app and C-a of ferrocene in PEG . LiClO4 polyelectrolyte from 25 degrees C to 75 degrees C. The dependence on the concentration of electroactive species was observed. The diffusion coefficients decrease with increasing ferrocene concentration and decreasing temperature. The mass transport mechanism is explained, by using a free volume model.
Resumo:
This article describes a quantitative study of the diffusion rate of ferrocene(Fc) dissolved in ploy(ethylene glycol)(PEG) medium containing MClO(4)(M = Li+, Na+, Bu(4)N(+), Hx(4)N(+)). The apparent diffusion coefficient D-app and the active concentration c(a) of Fc were simultaneously measured by using non-steady-state chronoamperometry. The D-app and c(a) of Fc have been estimated in PEG containing different concentrations and sizes of supporting electrolyte, and the dependence of D-app on ferrocene concentrations has been observed. The values of D-app decrease with increasing concentrations of Fc, increasing concentrations of LiClO4 or the ratio (O:Li) and also with 4 decreasing cation radius of the electrolyte. The temperature dependencies conform to a simple free volume model. The concentration and size of the counterion dependencies of the diffusion rate are similar to the behavior of their dependencies of ionic conductivity in polyelectrolyte.
Resumo:
The potential step and cyclic voltammetric experiments in the thin layer cell were studied by the digital simulation method in this work. A relationship between the time needed for exhaustive electrolysis of the electroactive species and the thickness of the thin layer cell was obtained. On the basis of this formula, the lower time limit for a kinetic plot of the following chemical reaction can be estimated. For the cyclic voltammetry, a semiempirical formula was derived for the peak-peak potential difference (Delta Ep) in terms of the sweep rate (v), thickness of the cell (d), diffusion coefficient (D) and electron transfer number (n) 59 - n Delta Ep/n Delta Ep = 0.328(RT D/nF vd(2))(1.20).
Resumo:
The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.
Resumo:
Non-steady-state chronoamperometry of ultramicroelectrodes is a powerful method for the study of mass transport in polymer films. This method has many advantages over the conventional methods at a macroelectrode and the steady state method at an ultramicroelectrode, which yield the most information. The apparent diffusion coefficient, D(app), and the concentration of reactant in the film, c(f), can be determined from a single experiment without knowing the thickness of the film. We studied the transport of several species such as Ru(NH3)63+, Ru(bpy)3(2+), NR and MV2+ in Eastman-AQ polymer film coated ultramicroelectrodes by using this method.
Resumo:
Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)(2)) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)(2) with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e(-) and 4e(-) reactions, occurring simultaneously, to quietly 4e(-) reaction with the increasing chloride ion concentration.
Resumo:
This thesis presents several routes towards achieving artificial opal templates by colloidal self-assembly of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres and the use of these template for the fabrication of V2O5 inverse opals as cathode materials for lithium ion battery applications. First, through the manipulation of different experimental factors, several methods of affecting or directing opal growth towards realizing different structures, improving order and/or achieving faster formation on a variety of substrates are presented. The addition of the surfactant sodium dodecyl sulphate (SDS) at a concentration above the critical micelle concentration for SDS to a 5 wt% solution of PMMA spheres before dip-coating is presented as a method of achieving ordered 2D PhC monolayers on hydrophobic Au-coated silicon substrates at fast and slow rates of withdrawal. The effect that the degree of hydrophilicity of glass substrates has on the ordering of PMMA spheres is next investigated for a slow rate of withdrawal under noise agitation. Heating of the colloidal solution is also presented as a means of affecting order and thickness of opal deposits formed using fast rate dip coating. E-beam patterned substrates are shown as a means of altering the thermodynamically favoured FCC ordering of polystyrene spheres (PS) when dip coated at slow rate. Facile routes toward the synthesis of ordered V2O5 inverse opals are presented with direct infiltration of polymer sphere templates using liquid precursor. The use of different opal templates, both 2D and 3D partially ordered templates, is compared and the composition and arrangement of the subsequent IO structures post infiltration and calcination for various procedures is characterised. V2O5 IOs are also synthesised by electrodeposition from an aqueous VOSO4 solution at constant voltage. Electrochemical characterisation of these structures as cathode material for Li-ion batteries is assessed in a half cell arrangement for samples deposited on stainless steel foil substrates. Improved rate capabilities are demonstrated for these materials over bulk V2O5, with the improvement attributed to the shorter Li ion diffusion distances and increased electrolyte infiltration provided by the IO structure.
Resumo:
While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid.
Resumo:
During the soldering process, the copper atoms diffuse into liquid solders. The diffusion process determines integrity and the reworking possibility of a solder joint. In order to capture the diffusion scenarios of solid copper into liquid Sn–Pb and Sn–Cu solders, a computer modeling has been performed for 10 s. An analytical model has also been proposed for calculating the diffusion coefficient of copper into liquid solders. It is found that the diffusion coefficient for Sn–Pb solder is 2.74 × 10− 10 m2/s and for Sn–Cu solder is 6.44 × 10−9 m2/s. The modeling results reveal that the diffusion coefficient is one of the major factors that govern the rate at which solid Cu dissolve in the molten solder. The predicted dissolved amounts of copper into solders have been validated with the help of scanning electron microscopic analysis.
Resumo:
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to simultaneously follow the diffusion of model drugs and solvent across polydimethylsiloxane (silicone) membrane. Three model drugs, cyanophenol (CNP), methyl nicotinate (MN) and butyl paraben (BP) were selected to cover a range of lipophilicities. Isostearyl isostearate (ISIS) was chosen as the solvent because its large molecular weight should facilitate observation of whether the drug molecules are able to diffuse through the membrane independently of the solvent. The diffusion of the three drugs and the solvent was successfully described by a Fickian model. The effects of parameters such as the absorption wavelength used to follow diffusion on the calculated diffusion coefficient were investigated. Absorption wavelength which affects the depth of penetration of the infrared radiation into the membrane did not significantly affect the calculated diffusion coefficient over the wavelength range tested. Each of the model drugs was observed to diffuse independently of the solvent across the membrane. The diffusion of a CNP-ISIS hydrogen bonded complex across the membrane was also monitored. The relative diffusion rates of the solute and solvent across the membrane can largely be accounted for by the molecular size of the permeant.