983 resultados para Chinese Hamster Ovary Cells
Resumo:
O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and dynamic posttranslational modification composed of a single monosaccharide, GlcNAc, glycosidically composed of a single monosaccharide, GlcNAc, glycosidically linked to the side-chain hydroxyl of serine or threonine residues. Although O-GlcNAc occurs on a myriad of nuclear and cytoplasmic proteins, only a few have thus far been identified. These O-GlcNAc-bearing proteins are also modified by phosphorylation and form reversible multimeric complexes. Here we present evidence for O-GlcNAc glycosylation of the oncoprotein c-Myc, a helix-loop-helix/leucine zipper phosphoprotein that heterodimerizes with Max and participates in the regulation of gene transcription in normal and neoplastic cells. O-GlcNAc modification of c-Myc is shown by three different methods: (i) demonstration of lectin binding to in vitro translated protein using a protein-protein interaction mobility-shift assay; (ii) glycosidase or glycosyltransferase treatment of in vitro translated protein analyzed by lectin affinity chromatography; and (iii) direct characterization of the sugar moieties on purified recombinant protein overexpressed in either insect cells or Chinese hamster ovary cells. Analyses of serial deletion mutants of c-Myc further suggest that the O-GlcNAc site(s) are located within or near the N-terminal transcription activation/malignant transformation domain, a region where mutations of c-Myc that are frequently found in Burkitt and AIDS-related lymphomas cluster.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2015.
Resumo:
Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool—as in speciation—aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.
Resumo:
Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies. CHO-hTSH cells were cultivated on a fetal bovine serum supplemented medium during cell growth phase. For rhTSH synthesis phase, 75% of supernatant was replaced by animal protein-free medium every 24 h. Cell cultures were monitored for agitation (rpm), temperature (A degrees C), dissolved oxygen (% DO), pH, cell concentration, MCs coverage, glucose consumption, lactate production, and rhTSH expression. The results indicate that the amount of MCs in the culture and the cell concentration at the beginning of rhTSH synthesis phase were crucial parameters for improving the final rhTSH production. By cultivating the CHO-hTSH cells with an initial cell seeding of four cells/MC on 4 g/L of MCs with a repeated fed batch mode of operation at 40 rpm, 37 A degrees C, 20% DO, and pH 7.2 and starting the rhTSH synthesis phase with 3 x 10(6) cells/mL, we were able to supply the cultures with enough glucose, to maintain low levels of lactate, and to provide high percent (similar to 80%) of fully covered MCs for a long period (5 days) and attain a high cell concentration (similar to 9 x 10(5) cells/mL). The novelty of the present study is represented by the establishment of cell culture conditions allowing us to produce similar to 1.6 mg/L of rhTSH in an already suitable degree of purity. Batches of produced rhTSH were purified and showed biological activity.
Resumo:
The dibenzylbutyrolactone lignan (-)-hinokinin (HK) was obtained by partial synthesis from (-)-cubebin, isolated from the dry seeds of the pepper, Piper cubeba. In view of the trypanocidal activity of HK and its potential as a lead compound for drug development, evaluation of its possible genotoxic activity is required. We have tested HK for possible genotoxicity and evaluated the compound`s effect on the activity of the clastogens doxorubicin (DXR) and methyl methanesulfonate (MMS) in the micronucleus (MN) assay with Chinese hamster lung fibroblast V79 cells. HK alone did not induce MN, at concentrations up to 128 mu M. In combined treatments, HK reduced the frequency of MN induced by MMS. With respect to DXR, HK exerted a protective effect at lower concentrations, but at higher concentrations it potentiated DXR clastogenicity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian `cerrado`. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 mu M) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 mu g ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 mu g ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
Resumo:
The organophosphorus insecticide Nuvacron (Monocrotophos) is a very toxic agent widely utilized in Brazilian agriculture. To evaluate the clastogenic potential of this insecticide, in vivo and in vitro micronucleus (MN) assay experiments were carried out on Swiss mice and on Chinese hamster ovary (CHO) cells, respectively. Nuvacron administered at doses of 2.5 and 5.0 mg/kg induced a statistically significant increase in the frequencies of MN detected in polychromatic bone marrow erythrocytes from animals (six/group) treated ip 24 h before. Exponentially growing CHAO cells were treated continuously (16h) with Nuvacron diluted in water to final concentrations of 1, 10, 100, 200, and 400 mug/ml. Three experiments were carried out using the cytokinesis-block method and a total of 6000 binucleated cells were scored to determine MN frequencies. A statistically significant increase in the frequencies of MN was observed for the cells treated with 1 and 10 mug/ ml Nuvacron. A marked decrease in cell proliferation rates was observed for CHO cultures treated with higher concentrations. These data demonstrate that Nuvacron has a genotoxic effect on both in vivo and in vitro mammalian test systems.
Resumo:
We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.
Resumo:
The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.
Resumo:
Marine organisms have been shown to be potential sources of bioactive compounds with pharmaceutical applications. Previous chemical investigation of the nudibranch Tambja eliora led to the isolation of the alkaloid tambjamine D. Tambjamines have been isolated from marine sources and belong to the family of 4-methoxypyrrolic-derived natural products, which display promising immunosuppressive and cytotoxic properties. Their ability to intercalate DNA and their pro-oxidant activity may be related to some of the biological effects of the 4-methoxypyrrolic alkaloids. The aim of the present investigation was to determine the cytotoxic, pro-oxidant and genotoxic properties of tambjamine D in V79 Chinese hamster lung fibroblast cells. Tambjamine D displayed a potent cytotoxic effect in V79 cells (IC50 1.2 mu g/mL) evaluated by the MTT assay. Based on the MTT result, V79 cells were treated with different concentrations of tambjamine D (0.6. 1.2. 2.4 and 4.8 mu g/mL). After 24 h, tambjamine D reduced the number of viable cells in a concentration-dependent way at all concentrations tested. assessed by the trypan blue dye exclusion test. The hemolytic assay showed that the cytotoxic activity of tambjamine D was not related to membrane disruption (EC50 > 100 mu g/mL). Tambjamine D increased the number of apoptotic cells in a concentration-dependent manner at all concentrations tested according to acridine orange/ethidium bromide staining, showing that the alkaloid cytotoxic effect was related to the induction of apoptosis. MTT reduction was stimulated by tambjamine D, which may indicate the generation of reactive oxygen species. Accordingly, treatment of cells with tambjamine D increased nitrite/nitrate at all concentrations and TBARS production starting at the concentration corresponding to the IC50. Tambjamine D, also, induced DNA strand breaks and increased the micronucleus cell frequency as evaluated by comet and micronucleus tests, respectively, at all concentrations evaluated. showing a genotoxic risk induced by tambjamine D. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Chinese hamster ovary (CHO) mutant UV40 cell line is hypersensitive to UV and ionizing radiation, simple alkylating agents, and DNA cross-linking agents. The mutant cells also have a high level of spontaneous chromosomal aberrations and 3-fold elevated sister chromatid exchange. We cloned and sequenced a human cDNA, designated XRCC9, that partially corrected the hypersensitivity of UV40 to mitomycin C, cisplatin, ethyl methanesulfonate, UV, and γ-radiation. The spontaneous chromosomal aberrations in XRCC9 cDNA transformants were almost fully corrected whereas sister chromatid exchanges were unchanged. The XRCC9 genomic sequence was cloned and mapped to chromosome 9p13. The translated XRCC9 sequence of 622 amino acids has no similarity with known proteins. The 2.5-kb XRCC9 mRNA seen in the parental cells was undetectable in UV40 cells. The mRNA levels in testis were up to 10-fold higher compared with other human tissues and up to 100-fold higher compared with other baboon tissues. XRCC9 is a candidate tumor suppressor gene that might operate in a postreplication repair or a cell cycle checkpoint function.
Resumo:
Insulin can regulate the abundance and organization of filamentous actin within cells in culture. Early studies using cell lines that overexpress the insulin receptor demonstrated that insulin caused a rapid reversible disassembly of actin filaments that coincided with the rapid tyrosine dephosphorylation of focal adhesion kinase. We have extended these studies by demonstrating that paxillin, another focal adhesion protein, and Src undergo tyrosine dephosphorylation in response to insulin in Chinese hamster ovary (CHO) and rat hepatoma (HTC) cells that overexpress the insulin receptor. This contrasted with the effect of insulin in parental CHO and HTC cells in which focal adhesion proteins were not dephosphorylated in response to the hormone. In addition, insulin caused a dispersion of focal adhesion proteins and disruption of actin filament bundles only in cells that overexpressed the insulin receptor. Moreover, in 3T3-L1 adipocytes, which are considered prototypic insulin-responsive cells, actin filament assembly was stimulated, and focal adhesion protein tyrosine phosphorylation was not altered. 3T3-L1 cells have more insulin receptors than either parental CHO or HTC cells but have fivefold less insulin receptors than the overexpressing cell lines. We hypothesize that a threshold may exist in which the overexpression of insulin receptors determines how insulin signaling pathways regulate the actin cytoskeleton.
Resumo:
Polycyclic aromatic hydrocarbons (PAH) are widespread environmental contaminants, and some are potent carcinogens in rodents. Carcinogenic PAH are activated in cells to metabolites that react with DNA to form stable covalent DNA adducts. It has been proposed [Cavalieri, E. L. & Roger, E. G. (1995) Xenobiotica 25, 677–688] that unstable DNA adducts are also formed and that apurinic sites in the DNA resulting from unstable PAH adducts play a key role in the initiation of cancer. The potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) is activated in cells to (+)-syn- and (−)-anti-DB[a,l]P-11,12-diol-13,14-epoxide (DB[a,l]PDE), which have been shown to form stable adducts with DNA. To evaluate the importance of unstable PAH adducts, we compared stable adduct formation to apurinic site formation. Stable DB[a,l]PDE adducts were determined by 33P-postlabeling and HPLC. To measure apurinic sites they were converted to strand breaks, and these were monitored by examining the integrity of a particular restriction fragment of the dihydrofolate reductase gene. The method easily detected apurinic sites resulting from methylation by treatment of cells or DNA with dimethyl sulfate or from reaction of DNA with DB[a,l]P in the presence of horseradish peroxidase. We estimate the method could detect 0.1 apurinic site in the 14-kb fragment examined. However, apurinic sites were below our limit of detection in DNA treated directly with (+)-syn- or (−)-anti-DB[a,l]PDE or in DNA from Chinese hamster ovary B11 cells so treated, although in these samples the frequency of stable adducts ranged from 3 to 10 per 14 kb. We also treated the human mammary carcinoma cell line MCF-7 with DB[a,l]P and again could not detect significant amounts of unstable adducts. These results indicate that the proportion of stable adducts formed by DB[a,l]P activated in cells and its diol epoxides is greater than 99% and suggest a predominant role for stable DNA adducts in the carcinogenic activity of DB[a,l]P.