920 resultados para Chicago and North Western Railway Company


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Half-title: Delineations of ... Somerset, and of the Mendip caverns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streetcars. On verso: Train and Military Company from Nov. 1895 MichStoner, Claude Thomas, 1899-1977igan Central Magazine, "Headlight"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major topographic features, or provinces, beyond the continental slope off the Atlantic coast of the United States are (1) Sohm Plain, (2) Hatteras Plain, (3) Nares Plain, (4) Blake Basin, (5) Blake Plateau-Bahama Banks, and (6) Bermuda Rise. The whole of the described area is commonly referred to as the North American Basin. This basin is bounded on the north by Newfoundland Ridge and on the south by Puerto Rico Trench. Topographic features of note within the basin are the divide and the area of depressions between Sohm and Hatteras Plains, the sharply crested Blake Ridge, and the Puerto Rico Ridge. Recently accumulated data on deep-sea oores has given good evidence that the silt and sand covering the abyssal plains are displaced continental sediments in a virtually quartz-free oceanic environment. These sediments were deposited on a primary volcanic bottom. The primary or volcanic bottom is characterized by abyssal hills and seamounts, and the sediment bottom is characterized by abyssal plains, which extend seaward from the continental margins. On the Blake Plateau, bottom photographs and dredge hauls in the axis of the stream show that locally sediment has been removed and the bottom is paved with crusts and nodules of manganese. Photographs and dredged samples from the outer part of the New England Seamount, Chain and Caryn Peak also indicate extensive encrustations of manganese oxide which acts as a binding agent in areas of ooze or other organic debris and thus helps to stabilize the bottom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two expeditions of the R.V. "Polarstern" to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: -22°C, maximum brine salinity: 223, brine volume: <=5%) and more moderate conditions in summer (minimum ice temperature: -5.6°C, maximum brine salinity: 94, most brine volumes: >=5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a/l, while chl a concentrations of up to 67.4 µmol/l were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms /m**2 in summer and between 3.7 and 24.8×10**3 organisms /m**2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.