937 resultados para Chemistry -- Electronic data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic technologies for data processing in the optical domain are expected to play a major role in future high-speed communications. Nonlinear effects in optical fibres have many attractive features and great, but not yet fully explored potential for optical signal processing. Here we provide an overview of our recent advances in developing novel techniques and approaches to all-optical processing based on fibre nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on a problem of Grid system decomposition by developing its object model. Unified Modelling Language (UML) is used as a formalization tool. This approach is motivated by the complexity of the system being analysed and the need for simulation model design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper conceptual foundations for the development of Grid systems that aimed for satellite data processing are discussed. The state of the art of development of such Grid systems is analyzed, and a model of Grid system for satellite data processing is proposed. An experience obtained within the development of the Grid system for satellite data processing in the Space Research Institute of NASU-NSAU is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implementation of GEOSS/GMES initiative requires creation and integration of service providers, most of which provide geospatial data output from Grid system to interactive user. In this paper approaches of DOS- centers (service providers) integration used in Ukrainian segment of GEOSS/GMES will be considered and template solutions for geospatial data visualization subsystems will be suggested. Developed patterns are implemented in DOS center of Space Research Institute of National Academy of Science of Ukraine and National Space Agency of Ukraine (NASU-NSAU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.