940 resultados para Chemically synthesized
Resumo:
The photocatalytic activity of combustion synthesized nanocrystalline CeAlO3 was determined for the degradation of four anionic and four cationic dyes. The perovskite oxide showed high-photocatalytic activity and a complete degradation of all the dyes was possible within 2 h. The photocatalytic activity of the compound was comparable with the activity of the commercial Degussa P-25 TiO2 catalyst. The degradation of dyes was found to follow first order kinetics and the first order degradation rate constants were determined.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mesoporous MnO2 is prepared from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) as a reducing as well as a structure-directing agent. The as synthesized MnO2 samples are poorly crystalline with mesoporosity having pore diameter between 8 and 40 nm. BET surface area as high as 273 m(2) g(-1) is obtained. By heating, the poorly crystalline MnO2 turns into a well crystalline form at 400 degrees C with nanorod morphology. However, the surface area decreases for the heated samples. Samples of MnO2 prepared by varying the ratio of KMnO4 and the copolymer, and also the heated samples are subjected to electrochemical characterization for supercapacitor studies. High specific capacitance values on mass basis are obtained for the as prepared mesoporous MnO2 samples. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3- ions on CeO2 increases at the expense of Au. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on alpha-Al2O3 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O3. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mumol g(-1) s(-1) at 250 and 300 degreesC respeceively. Activation energy (E,) values are 106 and 90 kJ mol(-1) for CO + O-2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.
Resumo:
Pd/CeO2 (1 at. %) prepared by the solution-combustion method shows a higher catalytic activity for CO oxidation and NO reduction than Pd metal, PdO, and Pd dispersed over CeO2 by the conventional method. To understand the higher catalytic properties, the structure of 1 at. % Pd/CeO2 catalyst material has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The diffraction lines corresponding to Pd or PdO are not observed in the high-resolution XRD pattern of 1 at. % Pd/CeO2. The structure of 1 at. % Pd/CeO2 could be refined for the composition of Ce0.99Pd0.01O1.90 in the fluorite structure with 5% oxide ion vacancy. Pd(3d) peaks in the XPS in I at. % Pd/CeO2 are shifted by 3 eV indicating that Pd is in a highly ionic +2 state. EXAFS studies show the average coordination number of 3 around Pd2+ ion in the first shell of 1 at. % Pd/CeO2 at a distance of 2.02 Angstrom, instead of 4 as in PdO. The second shell at 2.72 Angstrom is due to Pd-Pd correlation which is larger than 2.69 Angstrom in PdO. The third shell at 3.31 Angstrom having 7 coordination is absent either in Pd metal or PdO, which can be attributed to -Pd2+-Ce4+- correlation. Thus, 1 at. % Pd/CeO2 forms the Ce1-xPdxO2-delta type of solid solution having -Pd2+-O-2-Ce4+- kinds of linkages.
Resumo:
The catalytic oxidation and decomposition of NH3 have been carried out over combustion synthesized Al2O3 and CeO2 supported Pt, Pd and Ag catalysts using temperature programmed reaction (TPR) technique in a packed bed tubular reactor. Metals are ionically dispersed over CeO2 and fine metal particles are found on Al2O3. NH3 oxidation occurs over 1% Pt/Al2O3, 1% Pd/Al2O3 and 1% Ag/Al2O3 at 175, 270 and 350 C respectively producing N-2, NO, N2O and H2O, whereas 1% Pt/CeO2, 1% Pd/CeO2 and 1% Ag/CeO2 give N-2 along with NO, N2O and H2O at 200, 225 and 250degreesC respectively. N-2 predominates over other nitrogen-containing products during the reaction on all catalysts. At less O-2 concentration, N-2 and H2O are the only products obtained during NH3 Oxidation. NH3 decomposition over all the catalysts occurs above 450degreesC.
Resumo:
The structure and chemical environment of Cu in Cu/CeO2 catalysts synthesized by the solution combustion method have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and extended X-ray fine structure (EXAFS) spectroscopy. High-resolution XRD studies of 3 and 5 atom % Cu/CeO2 do not show CuO lines in their respective patterns. The structure could be refined for the composition Ce1-xCuxO2-delta (x = 0.03 and 0.05; delta similar to 0.13 and 0.16) in the fluorite structure with 5-8% oxide ion vacancy. High-resolution TEM did not show CuO particles in 5 atom % Cu/CeO2. EPR as well as XPS studies confirm the presence of Cu2+ species in the CeO2 matrix. Redox potentials of Cu species in the CeO2 matrix are lower than those in CuO. EXAFS investigations of these catalysts show an average coordination number of 3 around the Cu2+ ion in the first shell at a distance of 1.96 Angstrom, indicating the O2- ion vacancy around the Cu2+ ion. The Cu-O bond length also decreases compared to that in CuO. The second and third shell around the Cu2+ ion in the catalysts are attributed to -Cu2+-O2--Cu2+ - at 2.92 Angstrom and -Cu2+-O2--Ce4+- at the distance of 3.15 Angstrom, respectively. The present results provide direct evidence for the formation of a Ce1-xCuxO2-delta type of solid solution phase having -square-Cu2+-O-Ce4+- kind of linkages.
Resumo:
Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.
Resumo:
Rod-shaped V(2)O(5) was synthesized using the solution combustion technique, and the morphology of the compound was confirmed by TEM. Rods of an average diameter of 500 nm and length 3-6 times the diameter were obtained after the calcination of freshly prepared V(2)O(5) at 550 degrees C for 24 h. Pd metal nanoparticles of 20 nm size were deposited onto the rods using the wet impregnation technique. The as-synthesized, calcined and Pd impregnated V(2)O(5) were characterized by a wide variety of techniques including energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. These compounds were tested for CO oxidation, adsorption, and photocatalytic degradation of dyes. The 1% Pd/V(2)O(5) showed a high activity for CO oxidation, the as-synthesized compound showed activity for the adsorption of cationic dyes, whereas the calcined V(2)O(5) sample showed high rates of photocatalytic degradation of dyes. (C) 2010 American Institute of Chemical Engineers AIChE J, 57: 2215-2228, 2011
Resumo:
The photocatalytic antibacterial activity of Ag impregnated combustion synthesized TiO(2) (0.25 g/L) was studied against Escherichia coil in presence of UV irradiation. The effect of various parameters, such as anions, canons, hydrogen peroxide and pH, on the photocatalytic inactivation was investigated. The addition of inorganic ions showed a negative effect on inactivation. Among anions, the presence of chloride ions was observed to have a maximum negative effect and reduced the inactivation considerably. Among cations, the bacterial inactivation reduced significantly in the presence of Ca(2+) ions. Hydrogen peroxide addition in combination with Ag/TiO(2) photocatalysis, however, improved the inactivation. Photocatalysis with high concentration of H(2)O(2) yielded complete bacterial inactivation within few minutes. The photocatalytic inactivation of E. coil was not affected by variation in pH. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Tetragonal ZrO(2), synthesized by solution combustion technique, was found to be photocatalytically active for the degradation of anionic dyes. The compound was characterized by FT-Raman spectroscopy, X-ray photoelectron spectroscopy, FT-infrared spectroscopy, UV-vis spectroscopy, BET surface area analysis, and zero point charge pH measurement. A high concentration of surface hydroxyl groups was observed over the catalyst, as confirmed by XPS and FUR. The photocatalytic degradation of orange G, amido black, remazol brilliant blue R, and alizarin cyanine green (ACG) was carried out with this material. The effect of pH, inorganic. salts, and H(2)O(2) on the activity of the catalyst was also studied, and it was found that the catalyst maintained its activity at a wide range of pH and in the presence of inorganic salts. Having established that ZrO(2) was photocatalytically active, mixed oxide catalysts of TiO(2)-ZrO(2) were also tested for the photocatalytic degradation of ACG, and the 50% ZrO(2)-TiO(2) mixed oxides showed activity that was comparable to the activity of TiO(2).
Resumo:
The W, V, Ce, Zr, Fe, and Cu metal ion substituted nanocrystalline anatase TiO2 was prepared by solution combustion method and characterized by XRD, Raman, BET, EPR, XPS, IR TGA, UV absorption, and photoluminescence measurements. The structural studies indicate that the solid solution formation was limited to a narrow range of concentrations of the dopant ions. The photocatalytic degradation of 4-nitrophenol under UV and solar exposure was investigated with Ti1-xMxO2±δ. The degradation rates of 4-nitrophenol with these catalysts were lesser than the degradation rates of 4-nitrophenol with undoped TiO2 both with UV exposure and solar radiation. However, the photocatalytic activities of most metal ion doped TiO2 are higher than the activity of the commercial TiO2, Degussa P25. The decrease in photocatalytic activity is correlated with decrease in photoluminescence due to electron states of metal ions within the band gap of TiO2.
Resumo:
Powder neutron di®raction and Hi-Q neutron di®raction data have been recorded and analysed in order to obtain the local and long range order of Cu in Cu-doped CeO2 with three doping levels of Cu. Rietveld method and MCGR techniques of data analysis for the two types of data reveal that the Cu ion is in the 2+ oxidation state and has a vacancy in its ¯rst coordination shell. These deductions from the data analysis ¯t well with the mechanism of catalysis we propose.