992 resultados para Chemical weathering
Resumo:
Variations in the sediment input to the Namaqualand mudbelt during the Holocene are assessed using an integrative terrestrial to marine, source to sink approach. Geochemical and Sr and Nd isotopic signatures are used to distinguish fluvial sediment source areas. Relative to the sediments of the Olifants River, craton outcrops in the northern Orange River catchment have a more radiogenic Sr and a more unradiogenic Nd isotopic signature. Furthermore, upper Orange River sediments are rich in heavier elements such as Ti and Fe derived from the chemical weathering of Drakensberg flood basalt. Suspension load signatures change along the Orange River's westward transit as northern catchments contribute physical weathering products from the Fish and Molopo River catchment area. Marine cores offshore of the Olifants (GeoB8323-2) and Orange (GeoB8331-4) River mouths show pulses of increased contribution of Olifants River and upper Orange River input, respectively. These pulses coincide with intervals of increased terrestrial organic matter flux and increased paleo-production at the respective core sites. We attribute this to an increase in fluvial activity and vegetation cover in the adjacent catchments during more humid climate conditions. The contrast in the timing of these wet phases in the catchment areas reflects the bipolar behavior of the South African summer and winter rainfall zones. While rainfall in the Orange River catchment is related to southward shifts in the ICTZ, rainfall in the Olifants catchment is linked to northward shifts in Southern Hemisphere Westerly storm tracks. The later may also have increased southern Benguela upwelling in the past by reducing the shedding of Agulhas eddies into the Atlantic. The high-resolution records of latitudinal shifts in these atmospheric circulation systems correspond to late Holocene centennial-millennial scale climate variability evident in Antarctic ice core records. The mudbelt cores indicate that phases of high summer rainfall zone and low winter rainfall zone humidity (at ca. 2.8 and 1 ka BP) may be synchronous with Antarctic warming events. On the other hand, dry conditions in the summer rainfall zone along with wet conditions in the winter rainfall zone (at ca 3.3, 2 and 0.5 ka BP) may be associated with Antarctic cooling events.
Resumo:
The CRP-2/2A core, drilled in western McMurdo Sound in October and November 1998, penetrated 624 m of Quaternary. Pliocene, lower Miocene, and Oligocene glacigenic sediments. The palaeoclimatic record of CRP-2/2A is examined using major element analyses of bulk core samples of fine grained sediments (mudstones and siltstones) and the Chemical Index of Alteration (CIA) of Nesbitt & Young (1982). The CIA is calculated from the relative abundances of AI, K, Ca, and Na oxides, and its magnitude increases as the effects of chemical weathering increase. However, changes in sediment provenance can also affect the CIA, and provenance changes are recorded by shifts in the Al2O3/TiO2 ratios and the Nb contents of these CRP-2/2A mudstones. Relatively low CIA values (40-50) occur throughout the CRP-2/2A sequence, whereas the Al2O3/TiO2 ratio decreases upsection. The major provenance change is an abrupt onset of McMurdo Volcanic Group detritus at ~300 mbsf and is best characterized by a rapid increase in Nb content in the sediments. This provenance shift is not evident in the CIA record, suggesting that a contribution from the Ferrar Dolerite to the older sediments was replaced by an input of McMurdo Volcanic Group material in the younger sediments. If this is true, then the relatively uniform CIA values indicate relatively consistent palaeoweathering intensities throughout the Oligocene and early Miocene in the areas that supplied sediment to CRP-2/2A.
Resumo:
Independent proxies were assessed in two Late Quaternary sediment cores from the eastern South Atlantic to compare deep-water changes during the last 400 kyr. Two cores were recovered from beneath North Atlantic Deep Water (NADW) at approximately 3 000 m depth. Late Quaternary presence of NADW is indicated by the Cibicidoides wuellerstorfi assemblage on the Walvis Ridge (Core GeoB 1214) and the Bulimina alazanensis assemblage on the Namibian continental slope (Core GeoB 1710). The propagation of NADW is exclusively observed during interglacials, with maximum factor loadings in Stages 1, 5, 7, 9 and 11. These maxima are consistent with peaks in kaolinite/chlorite ratios and maxima of poorly crystalline smectite in the clay-mineral record. Kaolinite and poorly crystalline smectite are products of intense chemical weathering. They are injected into the NADW at low latitudes, north of the study area, and advected south. Chlorite, which is stable under cold weathering regimes, is a characteristic mineral of water masses of southern origin. During glacial stages, it is advected north with Southern Component Water (SCW). Above the NADW/SCW depths, kaolinite/chlorite ratios vary only slightly without a significant glacial-interglacial pattern, as measured in a core (GeoB 1712) from 1 000 m deep on the same profile of the Namibian continental slope off Walvis Bay.
Resumo:
The occurrence of microbialites in post-glacial coral reefs has been interpreted to reflect an ecosystem response to environmental change. The greater thickness of microbialites in reefs with a volcanic hinterland compared to thinner microbial crusts in reefs with a non-volcanic hinterland led to the suggestion that fertilization of the reefal environment by chemical weathering of volcanic rocks stimulated primary productivity and microbialite formation. Using a molecular and isotopic approach on reef-microbialites from Tahiti (Pacific Ocean), it was recently shown that sulfate-reducing bacteria favored the formation of microbial carbonates. To test if similar mechanisms induced microbialite formation in other reefs as well, the Tahitian microbialites are compared with similar microbialites from coral reefs off Vanuatu (Pacific Ocean), Belize (Caribbean Sea, Atlantic Ocean), and the Maldives (Indian Ocean) in this study. The selected study sites cover a wide range of geological settings, reflecting variable input and composition of detritus. The new lipid biomarker data and stable sulfur isotope results confirm that sulfate-reducing bacteria played an intrinsic role in the precipitation of microbial carbonate at all study sites, irrespective of the geological setting. Abundant biomarkers indicative of sulfate reducers include a variety of terminally-branched and mid chain-branched fatty acids as well as mono-O-alkyl glycerol ethers. Isotope evidence for bacterial sulfate reduction is represented by low d34S values of pyrite (-43 to -42 per mill) enclosed in the microbialites and, compared to seawater sulfate, slightly elevated d34S and d18O values of carbonate-associated sulfate (21.9 to 22.2 per mill and 11.3 to 12.4 per mill, respectively). Microbialite formation took place in anoxic micro-environments, which presumably developed through the fertilization of the reef environment and the resultant accumulation of organic matter including bacterial extracellular polymeric substances (EPS), coral mucus, and marine snow in cavities within the coral framework. ToF-SIMS analysis reveals that the dark layers of laminated microbialites are enriched in carbohydrates, which are common constituents of EPS and coral mucus. These results support the hypothesis that bacterial degradation of EPS and coral mucus within microbial mats favored carbonate precipitation. Because reefal microbialites formed by similar processes in very different geological settings, this comparative study suggests that a volcanic hinterland is not required for microbialite growth. Yet, detrital input derived from the weathering of volcanic rocks appears to be a natural fertilizer, being conductive for the growth of microbial mats, which fosters the development of particularly abundant and thick microbial crusts.
Resumo:
Variations of global and regional silicate weathering rates and paleo-ocean circulation patterns are estimated by using radiogenic isotope records, but the effects of changes in provenance are generally ignored. Here sediment provenance has been constrained through the use of Ar-Ar ages for individual detrital minerals from the Labrador Sea, which can be compared directly to the radiogenic isotope compositions from the same core material. Dramatic changes in the radiogenic isotope composition of North Atlantic Deep Water through the Quaternary Period are shown to reflect discrete changes in both sources and weathering processes accompanying Northern Hemisphere glaciation. Changes in the different radiogenic isotope systems reflect the influence of source, physical weathering, and chemical weathering, and not simply changes in the underlying weathering rate or ocean circulation patterns that are typically inferred.
Resumo:
During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.
Resumo:
Time series of terrigenous source elements (Al, K, Ti, Zr) from core GeoB4901-8 recovered from the deep-sea fan of the Niger River record variations in riverine sediment discharge over the past 245,000 yr. Although the flux rates of all the elements depend on physical erosion, which is mainly controlled by the extent of vegetation coverage in central Africa, element/Al ratios reflect conditions for chemical weathering in the river basin. Maximum sediment input to the ocean occurs during cold and arid periods, when precipitation intensity and associated freshwater runoff are reduced. High carbonate contents during the same periods indicate that the sediment supply has a positive effect on river-induced marine productivity. In general, variations in the terrestrial signals contain a strong precessional component in tune with changes in low-latitude solar radiation. However, the terrestrial signal lags the insolation signal by several thousand years. K/Al, Ti/Al, and Zr/Al records reveal that African monsoonal precipitation depends on high-latitude forcing. We attribute the shift between insolation cycle and river discharge to the frequently reported nonlinear response of African climate to primary orbital configurations, which may be caused by a complex interaction of the secondary control parameters, such as surface albedo and/or thermohaline circulation.
Resumo:
Snow samples collected from hand-dug pits at two sites in Simcoe County, Ontario, Canada were analysed for major and trace elements using the clean lab methods established for polar ice. Potentially toxic, chalcophile elements are highly enriched in snow, relative to their natural abundance in crustal rocks, with enrichment factor (EF) values (calculated using Sc) in the range 107 to 1081 for Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, Te, and Zn. Relative to M/Sc ratios in snow, water samples collected at two artesian flows in this area are significantly depleted in Ag, Al, Be, Bi, Cd, Cr, Cu, Ni, Pb, Sb, Tl, V, and Zn at both sites, and in Co, Th and Tl at one of the sites. The removal from the waters of these elements is presumably due to such processes as physical retention (filtration) of metal-bearing atmospheric aerosols by organic and mineral soil components as well as adsorption and surface complexation of ionic species onto organic, metal oxyhydroxide and clay mineral surfaces. In the case of Pb, the removal processes are so effective that apparently ''natural'' ratios of Pb to Sc are found in the groundwaters. Tritium measurements show that the groundwater at one of the sites is modern (ie not more than 30 years old) meaning that the inputs of Pb and other trace elements to the groundwaters may originally have been much higher than they are today; the M/Sc ratios measured in the groundwaters today, therefore, represent a conservative estimate of the extent of metal removal along the flow path. Lithogenic elements significantly enriched in the groundwaters at both sites include Ba, Ca, Li, Mg, Mn, Na, Rb, S, Si, Sr, and Ti. The abundance of these elements can largely be explained in terms of weathering of the dominant silicate (plagioclase, potassium feldspar, amphibole and biotite) and carbonate minerals (calcite, dolomite and ankerite) in the soils and sediments of the watershed. Arsenic, Mo, Te, and especially U are also highly enriched in the groundwaters, due to chemical weathering: these could easily be explained if there are small amounts of sulfides (As, Mo, Te) and apatite (U) in the soils of the source area. Elements neither significantly enriched nor depleted at both sites include Fe, Ga, Ge, and P.
Resumo:
This paper presents the results of the scanning electron microscopic (SEM) analysis of quartz grains from a selection of samples at Site 1166. Ocean Drilling Program Leg 188 drilled Site 1166 on the Prydz Bay continental shelf, Antarctica, to document onset and fluctuations of East-Antarctic glaciation. This site recovered Upper Pliocene-Holocene glacial sediments directly above Cretaceous through Lower Oligocene sediments recording the transition from preglacial to early glacial conditions. SEM analysis of quartz grains at Site 1166 was used to characterize the glacial and preglacial sediments by their diagnostic textures. Angular edges, edge abrasion as well as arcuate to straight steps, are the most frequent features in glacial deposits. The highest frequency of grains with round edges is present in Middle-Late Eocene fluvio-deltaic sands. However, angular outlines, fractured plates with subparallel linear fractures and edge abrasion indicating glacier influence are also present. Preglacial carbonaceous mudstone and laminated gray claystone show distinctive high relief quartz grains and some chemical weathering on grain surfaces. The results of the microtextural analysis of quartz grains are used to verify some critical periods of ice sheet evolution, such as the transition from the East Antarctic preglacial to glacial conditions on the continental shelf from Middle/Late Eocene to Late Eocene/Early Oligocene time.
Resumo:
Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36°N-49°S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e.g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.
Resumo:
Mineral and chemical composition of alluvial Upper-Pleistocene deposits from the Alto Guadalquivir Basin (SE Spain) were studied as a tool to identify sedimentary and geomorphological processes controlling its formation. Sediments located upstream, in the north-eastern sector of the basin, are rich in dolomite, illite, MgO and KB2BO. Downstream, sediments at the sequence base are enriched in calcite, smectite and CaO, whereas the upper sediments have similar features to those from upstream. Elevated rare-earth elements (REE) values can be related to low carbonate content in the sediments and the increase of silicate material produced and concentrated during soil formation processes in the neighbouring source areas. Two mineralogical and geochemical signatures related to different sediment source areas were identified. Basal levels were deposited during a predominantly erosive initial stage, and are mainly composed of calcite and smectite materials enriched in REE coming from Neogene marls and limestones. Then the deposition of the upper levels of the alluvial sequences, made of dolomite and illitic materials depleted in REE coming from the surrounding Sierra de Cazorla area took place during a less erosive later stage of the fluvial system. Such modification was responsible of the change in the mineralogical and geochemical composition of the alluvial sediments.
Resumo:
This work considers the crystallisation mechanisms of the most common and aggressive salts that generate stress in porous building stones as a result of changing ambient conditions. These mechanisms include the salt crystallisation that result from decreasing relative humidity and changes in temperature and, in hydrated salts, the dissolution of the lower hydrated form and the subsequent precipitation of the hydrated salt. We propose a new methodology for thermodynamic calculations using PHREEQC that includes these crystallisation mechanisms. This approach permits the calculation of the equilibrium relative humidity and the parameterization of the critical relative humidity and crystallisation pressures for the dissolution–precipitation transitions. The influence of other salts on the effectives of salt crystallisation and chemical weathering is also assessed. We review the sodium and magnesium sulphate and sodium chloride systems, in both single and multicomponent solutions, and they are compared to the sodium carbonate and calcium carbonate systems. The variation of crystallisation pressure, the formation of new minerals and the chemical dissolution by the presence of other salts is also evaluated. Results for hydrated salt systems show that high crystallisation pressures are possible as lower hydrated salts dissolve and more hydrated salts precipitate. High stresses may be also produced by decreasing temperature, although it requires that porous materials are wet for long periods of time. The presence of other salts changes the temperature and relative humidity of salt transitions that generates stress rather than reducing the pressure of crystallisation, if any salt has previously precipitated. Several practical conclusions derive from proposed methodology and provide conservators and architects with information on the potential weathering activity of soluble salts. Furthermore, the model calculations might be coupled with projections of future climate to give as improved understanding of the likely changes in the frequency of phase transitions in salts within porous stone.
Resumo:
The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.