955 resultados para Chemical control. eng


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efficacy of individual tree treatment (stem-injection), aerially applied root-absorbed herbicide and mechanical felling (with and without subsequent fire) in controlling woody plants was compared in a poplar box (Eucalyptus populnea) woodland community in central Queensland, Australia. All treatments reduced woody plant populations and basal area relative to the untreated control. Chemical control and 'mechanical felling plus fire' treatments were equally effective in reducing woody plant basal area 7 years after the treatments were imposed. However, mechanical felling alone was less effective. There was a clear tendency for the scattered tree (80% thinning) treatment to recover woody plant basal area towards pre-treatment levels faster than other clearing strategies, although this response was not significantly different from 20% clump retention and mechanical felling (without burning) treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cattle tick, Rhipicephalus (Boophilus) microplus, and the diseases it transmits pose a persistent threat to tropical beef production. Genetic selection of host resistance has become the method of choice for non-chemical control of cattle tick. Previous studies have suggested that larval stages are most susceptible to host resistance mechanisms. To gain insights into the molecular basis of host resistance that occurs during R. microplus attachment, we assessed the abundance of proteins (by isobaric tag for relative and absolute quantitation (iTRAQ) and Western blot analyses) and mRNAs (by quantitative reverse transcription PCR (qRT-PCR)) in skin adjacent to tick bite sites from high tick-resistant (HR) and low tick-resistant (LR) Belmont Red cattle following challenge with cattle tick. We showed substantially higher expression of the basal epidermal keratins KRT5 and KRT14, the lipid processing protein, lipocalin 9 (LCN9), the epidermal barrier catalysing enzyme transglutaminase 1 (TGM1), and the transcriptional regulator B lymphocyte-induced maturation protein 1 (Blimp1) in HR skin. Our data reveals the essential role of the epidermal permeability barrier in conferring greater resistance of cattle to tick infestation, and suggest that the physical structure of the epidermal layers of the skin may represent the first line of defence against ectoparasite invasion. Crown Copyright. © Australian Society for Parasitology Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports a field study undertaken to determine if the foliar application of herbicides fluroxypyr (150 mL 100 L-1 a.i.) and metsulfuron-methyl (12 g 100 L-1 a.i.) were capable of reducing the germination and viability of Chromolaena odorata (L.) R.M.King & H.Rob. (Siam weed) seeds at three different stages of maturity. After foliar application of fluroxypyr germination of mature seeds was reduced by 88% and intermediate and immature seeds were reduced by 100%, compared to the control. Fluroxypyr also reduced the viability of mature, intermediate and immature seeds by 79, 89 and 67% respectively, compared to the control. Metsulfuron-methyl reduced germination of intermediate and immature seeds by 53 and 99% respectively compared to the control. Viability was also reduced by 74 and 96% respectively, compared to the control. Mature seeds were not affected by metsulfuron-methyl as germination and viability increased by 2% and 1% respectively, as compared to the control. These results show that these herbicides are capable of reducing the amount of viable seed entering the seed bank. However depending on the treatment and stage of seed development a percentage of seeds on the plants will remain viable and contribute to the seed bank. This information is of value to Siam weed eradication teams as plants are most easily located and subsequently treated at the time of flowering. Knowledge of the impact of control methods on seeds at various stages of development will help determine the most suitable chemical control option for a given situation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The project will evaluate seed bank depletion of key northern herbicide resistant weeds under different environments, cropping systems, crop agronomies and non-chemical control tactics. The project will also evaluate soil biology and seed bank relationships to explain differences in seed bank persistence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The threat and management of glyphosate# resistant weeds are major issues facing northern region growers. At present five weeds are confirmed glyphosate-resistant: barnyard grass, liverseed grass, windmill grass, annual ryegrass and flaxleaf fleabane. This project used 25 experiments to investigate the ecology of the grass weeds, plus new or improved chemical and non-chemical control tactics for them. The refined glyphosate resistance model developed in this project used the experiments' findings to predict the long-term impacts on evolution of resistance and on seed bank numbers of resistant weeds. These data led to revised management and resistance avoidance strategies, which were published in the Reporter newsletter, and via an on-line risk assessment tool. - See more at: http://finalreports.grdc.com.au/UQ00054#sthash.oTkCN4Sk.dpuf

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiphoton ionization of NO via intermediate Rydberg states with ultra-short laser pulses is investigated with time-resolved photoelectron spectroscopy in combination with fermosecond pump-probe technology. The Rydberg states of NO, which are characterized by obvious ac-Stark shift in ultra-strong laser field, can be tuned in resonance to ionize NO molecule at one's will with identical laser pulses, i.e., one can 'select' resonance path to ionization. The results shown in this Letter demonstrate that the states holding notable dynamic Stark shift provide us another dimension to chemical control with strong laser field. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

抗旱节水化控技术是一种很有发展前景的农业节水技术。它具有操作简便、投入少、见效快、易推广的优点 ,因而是一般常规技术所无法替代的。本文介绍了几种主要的抗旱节水化控制剂 (保水剂、土壤蒸发抑制剂、植物抗蒸腾剂、土壤结构改良剂和植物生长调节剂 )的特性及应用效果 ,并指出了该技术研究中存在的一些问题 ,以期为化学节水技术广泛应用提供理论参考。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000