952 resultados para Cheese rheology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual α(s1)- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-salted cheeses were prepared from ultrafiltered (UF) cows' milk and salted to give final salt-in-moisture (SM) levels of 2.5, 3.2 and 4.0%. The cheeses were stored at 5degreesC and 10degreesC for up to 15 weeks. The microflora was dominated by lactic acid bacteria (LAB) but some mould growth was evident within 15 weeks at all SM levels and both temperatures. Levels of water-soluble nitrogen (WSN), attributed to chymosin activity, increased significantly with time, the rate being inversely proportional to the SM level and increasing with storage temperature. Similar effects were noted for trichloroacetic acid-soluble nitrogen (TCA-SN) and free amino acid (FAA) levels, both of which would also be affected by bacterial protease activity. The proteolytic activity was reflected by changes in the hardness and fracturability of the cheeses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of six low molecular weight elastomers with hydrogen bonding end-groups have been designed, synthesised and studied. The poly(urethane) based elastomers all contained essentially the same hard block content (ca. 11%) and differ only in the nature of their end-groups. Solution state 1H NMR spectroscopic analysis of model compounds featuring the end-groups demonstrate that they all exhibit very low binding constants, in the range 1.4 to 45.0 M-1 in CDCl3, yet the corresponding elastomers each possess a markedly different nanoscale morphology and rheology in the bulk. We are able to correlate small variations of the binding constant of the end-groups with dramatic changes in the bulk properties of the elastomers. These results provide an important insight into the way in which weak non-covalent interactions can be utilized to afford a range of self-assembled polyurethane based materials that feature different morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cheese currently suffers from an adverse nutritional image largely due to a perceived association between saturated fatty acid, cholesterol and the salt content of cheese with cardiovascular disease. However, cheese is also a rich source of essential nutrients such as, proteins, lipids, vitamins and minerals that play an integral part of a healthy diet. This review outlines the composition, structure and physiological characteristics of the nutritionally significant components of cheese, whilst presenting some of the controversies that surround the role of cheese in dietary guidelines and the potential cheese has to improve health in the UK population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hierarchical and "bob" (or branch-on-branch) models are tube-based computational models recently developed for predicting the linear rheology of general mixtures of polydisperse branched polymers. These two models are based on a similar tube-theory framework but differ in their numerical implementation and details of relaxation mechanisms. We present a detailed overview of the similarities and differences of these models and examine the effects of these differences on the predictions of the linear viscoelastic properties of a set of representative branched polymer samples in order to give a general picture of the performance of these models. Our analysis confirms that the hierarchical and bob models quantitatively predict the linear rheology of a wide range of branched polymer melts but also indicate that there is still no unique solution to cover all types of branched polymers without case-by-case adjustment of parameters such as the dilution exponent alpha and the factor p(2) which defines the hopping distance of a branch point relative to the tube diameter. An updated version of the hierarchical model, which shows improved computational efficiency and refined relaxation mechanisms, is introduced and used in these analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric properties of 16 process cheeses were determined over the frequency range 0.3-3 GHz. The effect of temperature on the dielectric properties of process cheeses were investigated at temperature intervals of 10 degrees C between 5 and 85 degrees C. Results showed that the dielectric constant decreased gradually as frequency increased, for all cheeses. The dielectric loss factor (epsilon") decreased from above 125 to below 12 as frequency increased. epsilon' was highest at 5 degrees C and generally decreased up to a temperature between 55 and 75 degrees C. epsilon" generally increased with increasing temperature for high and medium moisture/fat ratio cheeses. epsilon" decreased with temperature between 5 and 55 degrees C and then increased, for low moisture/fat ratio cheese. Partial least square regression models indicated that epsilon' and epsilon" could be used as a quality control screening application to measure moisture content and inorganic salt content of process cheese, respectively. (c) 2005 Elsevier Ltd. All rights reserved..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical characteristics of stirred curd were simultaneously monitored during syneresis in a 10-L cheese vat using computer vision and colorimetric measurements. Curd syneresis kinetic conditions were varied using 2 levels of milk pH (6.0 and 6.5) and 2 agitation speeds (12.1 and 27.2 rpm). Measured optical parameters were compared with gravimetric measurements of syneresis, taken simultaneously. The results showed that computer vision and colorimeter measurements have potential for monitoring syneresis. The 2 different phases, curd and whey, were distinguished by means of color differences. As syneresis progressed, the backscattered light became increasingly yellow in hue for circa 20 min for the higher stirring speed and circa 30 min for the lower stirring speed. Syneresis-related gravimetric measurements of importance to cheese making (e.g., curd moisture content, total solids in whey, and yield of whey) correlated significantly with computer vision and colorimetric measurements..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meltabilities of 14 process cheese samples were determined at 2 and 4 weeks after manufacture using sensory analysis, a computer vision method, and the Olson and Price test. Sensory analysis meltability correlated with both computer vision meltability (R-2 = 0.71, P < 0.001) and Olson and Price meltability (R-2 = 0.69, P < 0.001). There was a marked lack of correlation between the computer vision method and the Olson and Price test. This study showed that the Olson and Price test gave greater repeatability than the computer vision method. Results showed process cheese meltability decreased with increasing inorganic salt content and with lower moisture/fat ratios. There was very little evidence in this study to show that process cheese meltability changed between 2 and 4 weeks after manufacture..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of visible-near infrared spectra, obtained using a light backscatter sensor, in conjunction with chemometrics, to predict curd moisture and whey fat content in a cheese vat was examined. A three-factor (renneting temperature, calcium chloride, cutting time), central composite design was carried out in triplicate. Spectra (300–1,100 nm) of the product in the cheese vat were captured during syneresis using a prototype light backscatter sensor. Stirring followed upon cutting the gel, and samples of curd and whey were removed at 10 min intervals and analyzed for curd moisture and whey fat content. Spectral data were used to develop models for predicting curd moisture and whey fat contents using partial least squares regression. Subjecting the spectral data set to Jack-knifing improved the accuracy of the models. The whey fat models (R = 0.91, 0.95) and curd moisture model (R = 0.86, 0.89) provided good and approximate predictions, respectively. Visible-near infrared spectroscopy was found to have potential for the prediction of important syneresis indices in stirred cheese vats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..