999 resultados para Characterization Ceramics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering ceramics are often difficult to prepare metallographically because of their hardness, wear resistance and chemical inertness. Two silicon carbides, a silicon nitride and a sialon, are prepared and etched using several different techniques. The most efficient methods are identified. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mn+1AXn compounds, the ternary layered nanolaminates have gathered momentum in the last decade since its advent because of their unusual but exciting properties. These technologically important compounds combine some of the best properties of metals and ceramics. Like ceramics they are refractory, oxidation resistant, elastically stiff and relatively light. They also exhibit metallic properties like excellent machinability, thermal and electrical conductivity. This dissertation concentrates on the synthesis of germanium-based 211 Mn+1AXn compounds. The main objective of the research was to synthesize predominantly single phase samples of Cr2GeC, V2GeC and Ti2GeC. Another goal was to study the effect of solid substitutions on the M-site of Mn+1AXn compounds with Ge as an A-element. This study is in itself the first to demonstrate the synthesis of (Cr0.5V0.5)2GeC a novel Mn+1AXn compound. Scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction and electron probe microanalysis were employed to confirm the presence of predominantly single phase samples of M2GeC compounds where M = Ti, V, Cr and (Cr 0.5V0.5). A large part of the dissertation also focuses on the effect of the compressibility on the Ge-based 211 Mn+1AXn compounds with the aid of diamond anvil cell and high energy synchrotron radiation. This study also concentrates on the stability of these compounds at high temperature and thereby determines its suitability as high temperature structural materials. In order to better understand the effect of substitutions on A-site of 211 Mn+1 AXn compounds under high pressure and high temperature, a comparison is made with previously reported 211 Mn+1AXn compounds with Al, Ga and S as A-site elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 10 mol%Sc2O3, 1 mol%CeO2 stabilized-ZrO2 (SSZ) powder was successfully prepared using the sol-gel method. Subsequent SSZ electrolyte pellets were prepared by tape casting technique and sintered at 1400 °C, 1450 °C, 1500 °C, 1550 °C and 1600 °C. These were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). SSZ showed a pure cubic phase after sintering, the grain size of SSZ increased with the increase of sintering temperature. The SSZ sintered at 1550 °C showed the highest ion conductivity. The maximum power densities of Ni-SSZ/SSZ/La0.8Sr0.2MnO3-δ (LSM)-SSZ single cells sintered at 1550 °C were 0.18, 0.36, 0.51 and 0.72 W cm-2 at 650, 700, 750 and 800 °C, respectively. The polarization resistance (Rp) of the single cell attained 0.201 Ω cm2 at 800 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. Concerning the areas of applications, automobile, aeronautics, naval and even nuclear, the characteristics of these materials should be strictly controlled. In the nuclear area, ceramics are of great importance once they are the nuclear fuel pellets and must have, among other features, a well controlled porosity due to mechanical strength and thermal conductivity required by the application. Generally, the techniques used to characterize nuclear fuel are destructive and require costly equipment and facilities. This paper aims to present a nondestructive technique for ceramic characterization using ultrasound. This technique differs from other ultrasonic techniques because it uses ultrasonic pulse in frequency domain instead of time domain, associating the characteristics of the analyzed material with its frequency spectrum. In the present work, 40 Alumina (Al2O3) ceramic pellets with porosities ranging from 5% to 37%, in absolute terms measured by Archimedes technique, were tested. It can be observed that the frequency spectrum of each pellet varies according to its respective porosity and microstructure, allowing a fast and non-destructive association of the same characteristics with the same spectra pellets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The micro-chemical/mineralogical composition of samples of grey-paste imitations of Italic Late Republican black gloss tableware displaying a particular kind of lozenge-shaped decoration (“Losanga pottery”) from Portuguese and Spanish archaeological sites in SW Iberia has been analysed by BSEM + EDS, μXRD, Powder XRD, Portable XRF and μRaman spectroscopy. “Losanga” decorated ceramics have been found throughout the Western Mediterranean. Most of the sherds display a green-brown to greyish-black engobe at the surface resembling the gloss found in Attic pottery from Classical Greece. The overall chemical, mineralogical and fossiliferous homogeneities of the ceramic paste show common features (low K-feldspar/plagioclase ratio, high Ca content, abundance of well-preserved fragments of foraminifera microfossils) that indicate low firing conditions in the kiln ranging from 650 to 900 °C. With respect to the ceramic body, analytical results confirm an enrichment in the surface gloss layer of iron, potassium and aluminium and a depletion in silicon and calcium; the very fine grain size of the surface coating suggests elutriation of iron oxide-rich clays as confirmed by the presence of magnetite, maghemite and goethite in μ-XRD scan. Chemical and mineralogical data also suggest that the firing process was performed in a 600–850 °C temperature range, adopting the well-known technique of alternating oxidizing and reducing firing conditions largely employed at the time. The analytical results, while compatible with the archaeological hypothesis of a common provenance of the raw materials for pottery production from the Guadalquivir valley workshops cannot be considered conclusive due to the similarity in the geological substrate in the two SW Iberian regions under study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis examines the technical aspects of unglazed molded ceramics from Mértola, in the context of Islamic archaeology of the Iberian Peninsula (Almohad period, end of 12th and the beginning of 13th century). Ceramics of the time period under discussion (12th – 13th century) are understudied, including in what concern to shaping and firing of ceramic vessels, the origin of raw materials used in ceramics and glazes, and decoration methods such as slip painting and/or colored glazes. Moreover, the use of archaeometry tools is rare. Along with providing a general picture of molded ceramic production in Mértola, this work provides a new dimension to the discipline of Islamic ceramic studies by the analytical tool used and demonstrating the importance of archaeological ceramics of the western peripheries to the understanding the production of ceramics and the transmission of knowledge and cultural traditions within the Islamic caliphate. The chemical and mineralogical characterization of 12th/13th century Almohad unglazed molded ware from Mértola was accomplished through multi – analytical approach combining SEM, Powder/uXRD and LA-ICP-MS methods. In this paper unglazed and glazed samples were analyzed but the attention was given to unglazed specimens, while the glazed samples were used for the comparison with the previous group in order to determine possible similarities or dissimilarities, thus providing enough data to discuss about technical aspects and potential provenance; Resumo: A tese debruça-se sobre os aspetos técnicos de cerâmica de molde não-vidrada de Mértola, no contexto da arqueologia islâmica da Península Ibérica (período Almóada, final de XII e início do século XIII). A cerâmica do período em discussão (séculos XII-XIII) é pouco estudada inclusive no que concerne ao fabrico e à cozedura, à de fonte de matérias-primas, na pasta ou nos esmaltes e aos métodos de decoração, como pintura, presença de engobes ou esmaltes. Além disso, o uso de ferramentas de Arqueometria é raro. Para fornecer uma visão geral da produção de cerâmica moldada em Mértola, este trabalho oferece uma nova dimensão para a disciplina de cerâmica islâmicas pelas ferramentas analíticas utilizadas. Demonstrando a importância da cerâmica arqueológica da periferia ocidental para a compreensão da produção cerâmica e a transmissão de conhecimentos e tradições culturais no califado islâmico. A caracterização mineralógica e química das cerâmicas de molde e não-vidrada, Almóada, dos séculos XII-XIII de Mértola foi realizada através de uma abordagem multi-analítica que combina métodos de SEM-EDS, uXRD e LA-ICP-MS. Neste trabalho, as cerâmicas vidradas e não-vidradas foram analisadas conjuntamente, dando mais atenção aos espécimes não vidrados. As amostras de cerâmicas vidradas foram utilizados para a comparação com o grupo anterior, a fim de determinar as possíveis semelhanças ou diferenças, proporcionando, assim, dados suficientes para discutir os aspetos técnicos e o potencial de proveniência das cerâmicas não vidradas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.