957 resultados para Ceramic porosity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution reports and analyses the high thermal transport property of hot-pressed TiB2-10 wt.% TiSi2 ceramics. Depending on the test temperature, the thermal conductivity values of the TiB2 composite (which range from 89 to 122W m(-1) K-1) are determined to be 18-25% higher than that of monolithic TiB2. The thermal transport properties are analyzed in terms of electronic and phonon contributions. The electronic contribution is the major component of the thermal conductivity of TiB2 and comparable contributions from both electronic and phonon components are observed for the TiB2-TiSi2 composite. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/Porcelain insulators are widely used in power transmission lines to provide mechanical support for High voltage conductors in addition to withstand electrical stresses. As a result of lightning, switching or temporary over voltages that could initiate flashover under worst weather conditions, and to operate within interference limits. Given that the useful life in service of the individual insulator elements making up the insulator strings is hard to predict, they must be verified periodically to ensure that adequate line reliability is maintained at all times. Over the years utilities have adopted few methods to detect defective discs in a string, subsequently replacement of the faulty discs are being carried out for smooth operation. But, if the insulator is found to be defective in a string at some location that may not create any changes in the field configuration, there is no need to replace to avoid manpower and cost of replacement. Due to deficiency of electric field data for the existing string configuration, utilities are forced to replace the discs which may not be essentially required. Hence, effort is made in the present work to simulate the potential and electric field along the normal and with faults induced discs in a string up to 765 kV system voltages using Surface Charge Simulation Method (SCSM). A comparison is made between simulated results, experimental and field data and it was found that the computed results are quite acceptable and useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstereolithography (MSL) is a rapid prototyping technique to fabricate complex three-dimensional (3D) structure in the microdomain involving different materials such as polymers and ceramics. The present effort is to fabricate microdimensional ceramics by the MSL system from a non-aqueous colloidal slurry of alumina. This slurry predominantly consists of two phases i.e. sub-micrometer solid alumina particles and non-aqueous reactive difunctional and trifunctional acrylates with inert diluent. The first part of the work involves the study of the stability and viscosity of the slurry using different concentrations of trioctyl phosphine oxide (TOPO) as a dispersant. Based on the optimization, the highest achievable solid loadings of alumina has been determined for this particular colloidal suspension. The second part of the study highlights the fabrication of several micro-dimensional alumina structures by the MSL system. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Densification mechanisms involved during reactive hot pressing (RHP) of zirconium carbide (ZrC) have been studied. RHP has been carried out using zirconium (Zr) and graphite (C) powders in the molar ratios 1:0.5, 1:0.67, 1:0.8, and 1:1 at 40MPa, 800 degrees C-1200 degrees C for different durations. The volume fractions of phases formed, including porosity, are determined from the measured density and from Rietveld analysis. Increased densification with an increasing nonstoichiometry in carbon has been observed. Microstructural and X-ray diffraction observations coupled with the predictions of a model based on the constitutive laws governing plastic flow of zirconium suggest that the better densification of nonstoichiometric compositions arise from the higher amount of starting Zr and also the longer duration of its availability for plastic flow during RHP. Volume shrinkage due to reaction between Zr and C and the gradual elimination of the soft metal phase limit the final density achievable. Based on these observations, a two-step RHP carried out at 800 degrees C and 1200 degrees C leads to a better densification than a single RHP at 1200 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report the gas sensing behavior of BiNbO4 nanopowder prepared by a low temperature simple solution-based method. Before the sensing behaviour study, the as-synthesized nanopowder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-diffuse reflectance spectroscopy, impedance analysis, and surface area measurement. The NH3 sensing behavior of BiNbO4 was then studied by temperature modulation (50-350 degrees C) as well as concentration modulation (20-140 ppm). At the optimum operating temperature of 325 degrees C, the sensitivity was measured to be 90%. The cross-sensitivity of as-synthesized BiNbO4 sensor was also investigated by assessing the sensing behavior toward other gases such as hydrogen sulphide (H2S), ethanol (C2H5OH), and liquid petroleum gas (LPG). Finally, selectivity of the sensing material toward NH3 was characterized by observing the sensor response with gas concentrations in the range 20-140 ppm. The response and recovery time for NH3 sensing at 120 ppm were about 16 s and about 17 s, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT>PCL/ST>PCL/BT>PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that copper-matrix composites that contain 20 vol. % of an in situ processed, polymer-derived, ceramic phase constituted from Si-C-N have unusual friction-and-wear properties. They show negligible wear despite a coefficient of friction (COF) that approaches 0.7. This behavior is ascribed to the lamellar structure of the composite such that the interlamellar regions are infused with nanoscale dispersion of ceramic particles. There is significant hardening of the composite just adjacent to the wear surface by severe plastic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the origin of room temperature weak ferromagnetic behavior of polycrystalline Pb(Fe2/3W1/3)O-3 (PFW) powder. The structure and magnetic properties of the ceramic powder prepared by a Columbite method were characterized by X-ray and neutron diffraction, Mossbauer spectroscopy and magnetization measurements. Rietveld analysis of diffraction data confirm the formation of single phase PFW, without traces of any parasitic pyrochlore phase. PFW was found to crystallize in the cubic structure at room temperature. The Rietveld refinement of neutron diffraction data measured at room temperature confirmed the G-type antiferromagnetic structure of PFW in our sample. However, along with the antiferromagnetic (AFM) ordering of the Fe spins, we have observed the existence of weak ferromagnetism at room temperature through: (i) a clear opening of hysteresis (M-H) loop, (ii) bifurcation of the field cooled and zero-field cooled susceptibility; supported by Mossbauer spectroscopy results. The P-E loop measurements showed a non-linear slim hysteresis loop at room temperature due to the electronic conduction through the local inhomogeneities in the PFW crystallites and the inter-particle regions. By corroborating all the magnetic measurements, especially the spin glass nature of the sample, with the conduction behavior of the sample, we report here that the observed ferromagnetism originates at these local inhomogeneous regions in the sample, where the Fe-spins are not perfectly aligned antiferromagnetically due to the compositional disordering. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).