922 resultados para Central pulse pressure


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The elective ovariohysterectomy (OH) is the most frequent procedures performed in dogs. In this study was used three groups of seven animals each (GI, GII, and GIII) that was undergone to three elective OH techniques: (i) mini-celiotomy (Snook-hook technique), (ii) hybrid Natural Orifice Translumenal Endoscopic Surgery (NOTES), and (iii) celiotomy (conventional surgery). The surgical techniques were compared considering the surgery time, trans and postoperative complications, technical difficulties, postoperative pain, surgical bleedind and some vital parameters as: heart rate (FC), respiratory rate (), rectal temperature, invasive blood pressure (PVI) and central venous pressure (PVC). The OH by hybrid vaginal NOTES was the technique with the lowest post-surgical discomfort score and the lowest surgical bleeding, although its surgical time was higher compared to the conventional and the hook (mini-celiotomy) modalities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been demonstrated that disruption of social bonds and perceived isolation (loneliness) are associated with an increased risk of cardiovascular morbidity and mortality. Adolescence is proposed as a period of vulnerability to stress. Nevertheless, the impact of chronic social stress during this ontogenic period in cardiovascular function is poorly understood. Therefore, the purpose of this study was to compare the impact in cardiovascular function of social isolation for 3 weeks in adolescent and adult male rats. Also, the long-term effects of social isolation during adolescence were investigated longitudinally. Social isolation reduced body weight in adolescent, but not in adult animals. Disruption of social bonds during adolescence increased arterial pressure without affecting heart rate and pulse pressure (PP). Nevertheless, social isolation in adulthood reduced systolic arterial pressure and increased diastolic arterial pressure, which in turn decreased PP without affecting mean arterial pressure. Cardiovascular changes in adolescents, but not adults, were followed by facilitation of both baroreflex sensitivity and vascular reactivity to the vasodilator agent acetylcholine. Vascular responsiveness to either the vasodilator agent sodium nitroprusside or the vasoconstrictor agent phenylephrine was not affected by social isolation. Except for the changes in body weight and baroreflex sensitivity, all alterations evoked by social isolation during adolescence were reversed in adulthood after moving animals from isolated to collective housing. These findings suggest a vulnerability of adolescents to the effects of chronic social isolation in cardiovascular function. However, results indicate minimal cardiovascular consequences in adulthood of disruption of social bonds during adolescence. © 2015 Wiley Periodicals, Inc. Develop Neurobiol, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Glutamate (L-Glu) is an abundant excitatory amino acid in the central nervous system (CNS) and is present in the rat PAG. Moreover, data in the literature indicate its involvement in central blood pressure control. Here we report on the cardiovascular effects caused by microinjection of L-Glu into the dorsomedial PAG (dmPAG) of rats and the glutamatergic receptors as well as the peripheral mechanism involved in their mediation. The microinjection of L-Glu into the dmPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. The cardiovascular response was significantly reduced by pretreatment of the dmPAG with a glutamatergic M-methyl-D-aspartate (NMDA) receptor antagonist (LY235959) and was not affected by pretreatment with a non-NMDA receptor antagonist (NBQX), suggesting a mediation of that response by the activation of NMDA receptors. Furthermore, the pressor response was blocked by pretreatment with the ganglion blocker pentolinium (5 mg/kg, intravenously), suggesting an involvement of the sympathetic nervous system in this response. Our results indicate that the microinjection of L-Glu into the dmPAG causes sympathetic-mediated pressor responses in unanesthetized rats, which are mediated by glutamatergic NMDA receptors in the dmPAG. (c) 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Experimental Design Eighteen male calves 830 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Results Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Conclusion Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past two years we observed several changes in the diagnostic and therapeutic approach of patients with acute heart failure (acute HF), which led us to the need of performing a summary update of the II Brazilian Guidelines on Acute Heart Failure 2009. In the diagnostic evaluation, the diagnostic flowchart was simplified and the role of clinical assessment and echocardiography was enhanced. In the clinical-hemodynamic evaluation on admission, the hemodynamic echocardiography gained prominence as an aid to define this condition in patients with acute HF in the emergency room. In the prognostic evaluation, the role of biomarkers was better established and the criteria and prognostic value of the cardiorenal syndrome was better defined. The therapeutic approach flowcharts were revised, and are now simpler and more objective. Among the advances in drug therapy, the safety and importance of the maintenance or introduction of beta-blockers in the admission treatment are highlighted. Anticoagulation, according to new evidence, gained a wider range of indications. The presentation hemodynamic models of acute pulmonary edema were well established, with their different therapeutic approaches, as well as new levels of indication and evidence. In the surgical treatment of acute HF, CABG, the approach to mechanical lesions and heart transplantation were reviewed and updated. This update strengthens the II Brazilian Guidelines on Acute Heart Failure to keep it updated and refreshed. All clinical cardiologists who deal with patients with acute HF will find, in the guidelines and its summary, important tools to help them with the clinical practice for better diagnosis and treatment of their patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lung recruitment maneuvers (RMs), used to reopen atelectatic lung units and to improve oxygenation during mechanical ventilation, may result in hemodynamic impairment. We hypothesize that pulmonary arterial hypertension aggravates the consequences of RMs in the splanchnic circulation. Twelve anesthetized pigs underwent laparotomy and prolonged postoperative ventilation. Systemic, regional, and organ blood flows were monitored. After 6 h (= baseline), a recruitment maneuver was performed with sustained inflation of the lungs. Thereafter, the pigs were randomly assigned to group C (control, n = 6) or group E with endotoxin-induced pulmonary arterial hypertension (n = 6). Endotoxemia resulted in a normotensive and hyperdynamic state and a deterioration of the oxygenation index by 33%. The RM was then repeated in both groups. Pulmonary artery pressure increased during lipopolysaccharide infusion from 17 ± 2 mmHg (mean ± SD) to 31 ± 10 mmHg and remained unchanged in controls (P < 0.05). During endotoxemia, RM decreased aortic pulse pressure from 37 ± 14 mmHg to 27 ± 13 mmHg (mean ± SD, P = 0.024). The blood flows of the renal artery, hepatic artery, celiac trunk, superior mesenteric artery, and portal vein decreased to 71% ± 21%, 69% ± 20%, 76% ± 16%, 79% ± 18%, and 81% ± 12%, respectively, of baseline flows before RM (P < 0.05 all). Organ perfusion of kidney cortex, kidney medulla, liver, and jejunal mucosa in group E decreased to 65% ± 19%, 77% ± 13%, 66% ± 26%, and 71% ± 12%, respectively, of baseline flows (P < 0.05 all). The corresponding recovery to at least 90% of baseline regional blood flow and organ perfusion lasted 1 to 5 min. Importantly, the decreases in regional blood flows and organ perfusion and the time to recovery of these flows did not differ from the controls. In conclusion, lipopolysaccharide-induced pulmonary arterial hypertension does not aggravate the RM-induced significant but short-lasting decreases in systemic, regional, and organ blood flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prognostic relevance of quantitative an intracoronary occlusive electrocardiographic (ECG) ST-segment shift and its determinants have not been investigated in humans. In 765 patients with chronic stable coronary artery disease, the following simultaneous quantitative measurements were obtained during a 1-minute coronary balloon occlusion: intracoronary ECG ST-segment shift (recorded by angioplasty guidewire), mean aortic pressure, mean distal coronary pressure, and mean central venous pressure (CVP). Collateral flow index (CFI) was calculated as follows: (mean distal coronary pressure minus CVP)/(mean aortic pressure minus CVP). During an average follow-up duration of 50 ± 34 months, the cumulative mortality rate from all causes was significantly lower in the group with an ST-segment shift <0.1 mV (n = 89) than in the group with an ST-segment shift ≥0.1 mV (n = 676, p = 0.0211). Factors independently related to intracoronary occlusive ECG ST-segment shift <0.1 mV (r(2) = 0.189, p <0.0001) were high CFI (p <0.0001), intracoronary occlusive RR interval (p = 0.0467), right coronary artery as the ischemic region (p <0.0001), and absence of arterial hypertension (p = 0.0132). "High" CFI according to receiver operating characteristics analysis was ≥0.217 (area under receiver operating characteristics curve 0.647, p <0.0001). In conclusion, absence of ECG ST-segment shift during brief coronary occlusion in patients with chronic coronary artery disease conveys a decreased mortality and is directly influenced by a well-developed collateral supply to the right versus left coronary ischemic region and by the absence of systemic hypertension in a patient's history.