983 resultados para Cell-walls
Resumo:
Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by alpha-(1,2)- and alpha-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases alpha-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for alpha-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.
Resumo:
The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition.
Resumo:
Premature germination of resting spores as a means of protecting brassica crops from Plasmodiphora brassicae Wor., (Clubroot). Crop Protection. Clubroot disease causes substantial yield and quality losses in broadacre oil seed and intensive vegetable brassica crops worldwide. The causal microbe Plasmodiophora brassicae Wor., perennates as soil-borne dormant resting spores. Their germination is triggered by exudates from host roots. A valuable addition to sustainable integrated control strategies could be developed by identifying and synthesising the molecules responsible for stimulating resting spore germination. This paper reports experiments in which stimulatory exudates were collected from brassica roots following exposure to infective stages of P. brassicae. Analyses identified a germination signalling molecule of circa 1 kDa formed of glucose sub-units. Mass spectral analyses showed this to be a complex hexasaccharide carbohydrate with structural similarities to the components of plant cell walls. This is the first report of a host generated hexasaccharide which is capable of stimulating the germination of resting spores of P. brassicae. The implications for environmentally benign control of clubroot are discussed briefly.
Resumo:
Paepalanthus sect. Diphyomene has inflorescences arranged in umbels. The underlying bauplan seems however to be more complex and composed of several distinct subunits. Despite appearing superficially very similar, the morphology and anatomy of the inflorescences can supply useful information for the understanding of the phylogeny and taxonomy of the group. Inflorescences of Paepalanthus erectifolius, Paepalanthus flaccidus, Paepalanthus giganteus, and Paepalanthus polycladus were analyzed in regard to branching pattern and anatomy. In P. erectifolius, P. giganteus and P. polycladus the structure is a tribotryum, with terminal dibotryum, and with pherophylls bearing lateral dibotrya. In P. flaccidus, the inflorescence is a pleiobotryum, with terminal subunit, and without pherophylls. Secondary inflorescences may occur in all species without regular pattern. Especially when grown in sites without a pronounced seasonality, the distinction between enrichment zone (part of the same inflorescence) and new inflorescences may be obscured. The main anatomical features supplying diagnostic and phylogenetic information are as follows: (a) in the elongated axis, the thickness of the epidermal cell walls and the cortex size; (b) in the bracts, the quantity of parenchyma cells (c) in the scapes, the shape and the presence of a pith tissue. Therefore, P. sect. Diphyomene can be divided in two groups; group A is represented by P. erectifolius, P. giganteus and P. polycladus, and group B is represented by P. flaccidus. The differentiation is based in both, inflorescence structure and anatomy. Group A presents a life cycle and anatomical features similar to species of Actinocephalus. Molecular trees also point that these two groups are closely related. However, inflorescence morphology and blooming sequence are different. Species of group B present an inflorescence structure and anatomical features shared with many genera and species in Eriocaulaceae. The available molecular and morphology based phylogenies still do not allow a precise allocation of the group in the bulk of basal species of Paepalanthus collocated in P. sect. Variabiles. The characters described and used here supply however important information towards this goal. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.
Resumo:
Endothelial cells produce NO by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NOS (iNOS). We have previously shown that melatonin, in the nanomolar range, inhibits activation of constitutive NOS, and in the present paper, we evaluated whether it could interfere with the expression of iNOS, which is activated by lipopolysaccharide (LPS), a major component of gram-negative bacteria cell walls. Primary cultures of rat endothelial cells were loaded with fluorescent probe for NO detection. Nuclear factor kappa B (NF-kappa B) translocation in endothelial cells elicited by LPS was measured by electromobility shift assay, and the vasodilation of aortic rings was accessed by recording isometric contraction. Melatonin in a micromolar but not in a nanomolar range inhibits the NO production induced by LPS. This effect is not dependent on the activation of G protein-coupled melatonin receptors. The nuclear NF-kappa B translocation is a process necessary for iNOS transcription, and melatonin also inhibits its translocation. LPS induced vasodilation only in endothelium-intact aortic rings, and melatonin (10 mu m) inhibits the vasodilation. Here, we show that concentrations compatible with nocturnal melatonin surge (nm) did not interfere with the activity of iNOS. Considering that micromolar melatonin concentrations could be locally achieved through production by activated immune competent cells, extra-pineal melatonin could have a protective effect against tissue injury. We propose that melatonin blocked the LPS-induced vasodilation by inhibiting the NF-kappa B pathway. Finally, we propose that the effect of melatonin on vascular reactivity is one of the mechanisms that underlies the protective effect of this indolamine against LPS.
Resumo:
In this work, native xyloglucan was extracted from Tamarindus indica seeds (XGT), and its properties in phosphate buffer solution (PBS) were evaluated in comparison with a commercial tamarind kernel powder (TKP). The physico-chemical characteristics of the polysaccharides such as molar mass, critical concentration and intrinsic viscosity were determined. Furthermore, using spectroscopic and microscopy techniques, it was observed that the XGs tested can be considered macromolecules able to aggregate as nano-entities of 60-140 nm. The XGT tended to an ordered and compact spherical conformation determined by the Huggins constant, circular dichroism, atomic force microscopy and transmission electron microscopy. After the determination of the properties in PBS the XGs, at concentrations of 25% above their critical aggregation concentration, were used to encapsulate camptothecin, an anti-cancer drug. The XGT sample showed an encapsulation efficiency of 42% and first-order drug delivery kinetics. These results demonstrated the importance of knowledge of the physico-chemical properties of polysaccharides, for example, to better conduct their biotechnological applications as drug carriers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work. XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry, and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC) 2.8: 23: 1 (XGT) and 1.91.91 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more alpha-D-Xyl branches due to more beta-D-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy
Resumo:
In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
Micro and nanoparticulate systems as drug delivery carriers have achieved successful therapeutic use by enhancing efficacy and reducing toxicity of potent drugs. The improvement of pharmaceutical grade polymers has allowed the development of such therapeutic systems. Microencapsulation is a process in which very thin coatings of inert natural or synthetic polymeric materials are deposited around microsized particles of solids or around droplets. Products thus formed are known as microparticles. Xylan is a natural polymer abundantly found in nature. It is the most common hemicellulose, representing more than 60% of the polysaccharides existing in the cell walls of corn cobs, and is normally degraded by the bacterial enzymes present in the colon of the human body. Therefore, this polymer is an eligible material to produce colon-specific drug carriers. The aim of this study was to evaluate the technological potential of xylan for the development of colon delivery systems for the treatment of inflammatory bowel diseases. First, coacervation was evaluated as a feasible method to produce xylan microcapsules. Afterwards, interfacial cross-linking polymerization was studied as a method to produce microcapsules with hydrophilic core. Additionally, magnetic xylan-coated microcapsules were prepared in order to investigate the ability of producing gastroresistant systems. Besides, the influence of the external phase composition on the production and mean diameter of microcapsules produced by interfacial cross-linking polymerization was investigated. Also, technological properties of xylan were determined in order to predict its possible application in other pharmaceutical dosage forms
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foram avaliados os efeitos da idade, do nível de inserção da folha no perfilho e da estação de crescimento (verão ou outono), sobre a proporção de tecidos e a espessura da parede celular em lâminas foliares e segmentos de colmo de capim-braquiária (Brachiaria decumbens), capim-gordura (Melinis minutiflora) e capim-tifton 85 (Cynodon sp). Lâminas foliares das posições inferior e superior do perfilho foram colhidas no dia da exposição da lígula e 20 dias após. Foram determinadas as proporções relativas de epiderme, xilema, floema, bainha parenquimática dos feixes, esclerênquima, parênquima no colmo e mesofilo na lâmina foliar. Foram medidas as espessuras das paredes dos vasos de metaxilema e do esclerênquima da lâmina e do colmo. A proporção de tecidos em lâminas foliares não foi alterada pela idade nem pela estação de crescimento, sendo a espessura da parede de células do esclerênquima da lâmina a única característica modificada pela idade. Lâminas do nível de inserção superior apresentaram mais elevadas proporções de esclerênquima, bainha parenquimática dos feixes e xilema e células do esclerênquima e do metaxilema com paredes mais espessas, enquanto as lâminas do nível de inserção inferior se destacaram por apresentar mais elevada proporção de mesofilo e paredes celulares mais delgadas. Enquanto a proporção de parênquima decresceu, a área relativa de esclerênquima e as espessuras das paredes celulares variaram diretamente com a idade do colmo e foram maiores, em geral, no verão.