953 resultados para Cell-growth
Resumo:
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.
Resumo:
Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.
Resumo:
In Europe, the combination of plerixafor + granulocyte colony-stimulating factor is approved for the mobilization of hematopoietic stem cells for autologous transplantation in patients with lymphoma and myeloma whose cells mobilize poorly. The purpose of this study was to further assess the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization in European patients with lymphoma or myeloma. In this multicenter, open label, single-arm study, patients received granulocyte colony-stimulating factor (10 μg/kg/day) subcutaneously for 4 days; on the evening of day 4 they were given plerixafor (0.24 mg/kg) subcutaneously. Patients underwent apheresis on day 5 after a morning dose of granulocyte colony-stimulating factor. The primary study objective was to confirm the safety of mobilization with plerixafor. Secondary objectives included assessment of efficacy (apheresis yield, time to engraftment). The combination of plerixafor + granulocyte colony-stimulating factor was used to mobilize hematopoietic stem cells in 118 patients (90 with myeloma, 25 with non-Hodgkin's lymphoma, 3 with Hodgkin's disease). Treatment-emergent plerixafor-related adverse events were reported in 24 patients. Most adverse events occurred within 1 hour after injection, were grade 1 or 2 in severity and included gastrointestinal disorders or injection-site reactions. The minimum cell yield (≥ 2 × 10(6) CD34(+) cells/kg) was harvested in 98% of patients with myeloma and in 80% of those with non-Hodgkin's lymphoma in a median of one apheresis. The optimum cell dose (≥ 5 × 10(6) CD34(+) cells/kg for non-Hodgkin's lymphoma or ≥ 6 × 10(6) CD34(+) cells/kg for myeloma) was harvested in 89% of myeloma patients and 48% of non-Hodgkin's lymphoma patients. In this prospective, multicenter European study, mobilization with plerixafor + granulocyte colony-stimulating factor allowed the majority of patients with myeloma or non-Hodgkin's lymphoma to undergo transplantation with minimal toxicity, providing further data supporting the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization of hematopoietic stem cells in patients with non-Hodgkin's lymphoma or myeloma.
Resumo:
The inflammatory prostaglandin E2 (PGE2) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE2-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE2 EP4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE2-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.
Resumo:
Abstract : Adeno-associated virus (AAV) is a small DNA virus belonging to the familiy of Parvoviridae. Its genome contains two genes : the rep gene encoding four non structural proteins (Rep78, 68, 52 and 40) implicated in transcription, replication and site-specific integration of the viral DNA and the cap gene encoding three capsid proteins. AAV does not cause any disease, but is studied in view of its potential use to treat several diseases. An interesting property of AAV is its antiproliferative effect. Two elements of AAV can inhibit cell growth. Firstly, the single stranded viral DNA is recognized in cells as damaged DNA leading to either a G2 block or cell death depending on p53 status. Secondly, the two larger Rep proteins (Rep78 and 68) also arrest the cell cycle when they are expressed at high levels. Rep78 in particular induces a complete cell cycle arrest in all the phases, including S phase. Such a strong S phase arrest is rarely seen in other conditions. It was thus interesting to determine how Rep78 could induce it. We found that this strong block is the consequence of Rep78's effects on at least two pathways. Rep78 induces a DNA damage response by producing nicks in the cellular chromatin. Furthermore, Rep78 can bind to the cellular phosphatase Cdc25A and prevent its binding to its substrates CDK2 and CDK1, thus inhibiting its activity. A mutational analysis of Rep78 protein determined that its endonuclease activity is responsible for the DNA damage response and its zinc finger domain for Cdc25A inhibition. The combined expression of two mutants each defective for one of these activities, or these two activities obtained independently of Rep78, could restore the complete cell cycle block, indicating that these two effects of Rep78 are likely to explain completely the cell cycle block it induces. Secondly, the lack of pathogenicity of AAV, its broad range of infection and its ability to integrate site-specifically in human chromosome 19 make it an interesting potential vector for gene therapy. However site-specific integration is only possible in the presence of Rep78/68 whose gene is removed in recombinant AAV vectors. In this part of the study, we tried to introduce Rep protein separately from recombinant AAV vectors to promote their site-specific integration. For that purpose, a fusion protein, TAT-Rep, comprising Rep78/68 joined to the human immunodeficiency virus Tat protein was produced. It had the ability to enter cells and remain active there for a short period. Its activity was sufficient to mediate transcription from the p5 promoter, second-strand synthesis of a recombinant AAV and probably site-specific integration. Résumé : Le virus associé à l'adénovirus (AAV) est un petit virus à ADN qui fait partie de la famille des Parvoviridae. Son génome contient deux gènes : le gène rep code pour quatre protéines (Rep78, 68, 52 et 40) qui participent à la transcription, la réplication et l'intégration du virus et le gène cap code pour les trois protéines de capside. AAV ne produit pas de maladie, mais pourrait au contraire être utilisé pour en soigner. Sa bénignité, sa capacité à infecter différents types de cellules et son intégration spécifique en font un vecteur potentiel pour la thérapie génique. Pour qu'il puisse s'intégrer spécifiquement, il a besoin de la protéine Rep78 ou 68, mais ce gène doit être enlevé des vecteurs pour la thérapie génique. Le but de la première partie de cette étude était d'introduire Rep78 ou 68 dans des cellules en même temps qu'un AAV recombinant, mais indépendamment afin de permettre une intégration spécifique. La stratégie utilisée était de produire une protéine de fusion (TAT-Rep) qui peut entrer dans des cellules si elle est présente dans leur milieu. Cette protéine entrait bien dans les cellules et y était active favorisant ainsi l'intégration spécifique. Une deuxième propriété d'AAV, son effet anti-prolifératif, est intéressante dans le cadre de certaines maladies comme le cancer. Deux éléments d'AAV en sont responsables. D'abord, son ADN simple brin active une réponse cellulaire à l'ADN endommagé et arrête les cellules en G2 ou provoque leur mort. De plus, la protéine Rep78 d'AAV peut fortement bloquer le cycle cellulaire à toutes les phases, même en phase S, ce qui est rare. C'est pourquoi nous avons essayé de comprendre cet effet. Nous avons remarqué que Rep78 doit agir sur deux fronts pour obtenir ce fort bloc. D'un côté, Rep78 introduit des coupures simple brin sur l'ADN de la cellule ce qui active une réponse cellulaire à l'ADN endommagé qui passe par ATM. D'un autre côté, Rep78 lie une phosphatase cellulaire, Cdc25A, et l'empêche ainsi de lier ses substrats CDK2 et CDK1 et donc d'être active. Finalement, à l'aide de mutants de Rep78, nous avons déterminé que l'activité endonuclease de Rep78 était nécessaire pour induire une réponse cellulaire via ATM et que le domaine C-terminal appelé «zinc finger » était responsable de la liaison avec Cdc25A. En co-exprimant deux mutants, qui n'ont chacun qu'un des effets de Rep78, ou en obtenant les deux effets de Rep78 indépendamment d'elle, nous avons obtenu un bloc complet du cycle cellulaire similaire à celui obtenu avec Rep78. Il est donc probable que ces deux effets de Rep78 sont suffisants pour expliquer comment elle arrive à arrêter le cycle cellulaire si efficacement.
Resumo:
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Resumo:
Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.
Resumo:
During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F3 is unable to activate mTORC1, suggesting that growth activity could be restricted to individual E2F members. The effect of E2F1 on the activation of mTORC1 does not depend on Akt. Furthermore, over-expression of TSC2 does not interfere with the effect of E2F1, indicating that the E2F1-induced signal pathway can compensate for the inhibitory effect of TSC2 on Rheb. Immunolocalization studies demonstrate that E2F1 induces the translocation of mTORC1 to the late endosome vesicles, in a mechanism dependent of leucine. E2F1 and leucine, or insulin, together affect the activation of S6K stronger than alone suggesting that they are complementary in activating the signal pathway. From these studies, E2F1 emerges as a key protein that integrates cell division and growth, both of which are essential for cell proliferation.
Resumo:
We determined the capacity of transplanted beta cells to modify their replication and mass when stimulated by changes in metabolic demand. Five groups of Lewis rats were studied: group 1 (Tx-Px) had a 95% pancreatectomy 14 d after transplantation of 500 islets; group 2 (Px-Tx) had a 95% pancreatectomy 14 d before transplantation of 500 islets; group 3 (Tx) was transplanted with 500 islets; group 4 (Px) had a 95% pancreatectomy; and group 5 (normal) was neither transplanted nor pancreatectomized. Blood glucose was normal in Tx-Px and Tx groups at all times. Px-Tx and Px groups developed severe hyperglycemia after pancreatectomy that was corrected in Px-Tx group in 83% of rats 28 d after transplantation. Replication of transplanted beta cells increased in Tx-Px (1.15 +/- 0.12%) and Px-Tx (0.85 +/- 0.12%) groups, but not in Tx group (0.64 +/- 0.07%) compared with normal pancreatic beta cells (0.38 +/- 0.05%) (P < 0.001). Mean beta cell size increased in Tx-Px (311 +/- 14 microns2) and Px-Tx (328 +/- 13 microns2) groups compared with Tx (252 +/- 12 microns2) and normal (239 +/- 9 microns2) groups (P < 0.001). Transplanted beta cell mass increased in Tx-Px (1.87 +/- 0.51 mg) and Px-Tx (1.55 +/- 0.21 mg) groups compared with Tx group (0.78 +/- 0.17 mg) (P < 0.05). In summary, changes in transplanted beta cells prevented the development of hyperglycemia in Tx-Px rats. Transplanted beta cells responded to increased metabolic demand increasing their beta cell mass.
Resumo:
T-cell hybridomas were obtained after fusion of BW 5147 thymoma and long-term cultured T cells specific for cytochrome c peptide 66-80 derivatized with a 2,4-dinitroaminophenyl (DNAP) group. The resulting hybridomas were selected for their capacity to specifically bind to soluble radiolabeled peptide antigen. One T-cell hybrid was positive for antigen binding. This hybrid T cell exhibits surface phenotypic markers of the parent antigen-specific T cells. The binding could be inhibited either by an excess of unlabeled homologous antigen or by cytochrome c peptide 11-25 derivatized with a 2-nitrophenylsulfenyl group. Several other peptide antigens tested failed to inhibit binding of the radioactive peptide. This suggests that a specific amino acid sequence, modified by a DNAP group, is the antigenic structure recognized by the putative T-cell receptor. In addition, direct interaction of DNAP-66-80 peptide with the hybridoma cell line induced production of the T-cell growth factor interleukin 2. Furthermore, supernatants derived from syngeneic macrophages pulsed with the relevant peptide also induced the antigen-specific hybridoma to produce interleukin 2.
Resumo:
High-grade gliomas represent a group of aggressive brain tumors with poor prognosis due to an inherent capacity of persistent cell growth and survival. The ubiquitin-proteasome system (UPS) is an intracellular machinery responsible for protein turnover. Emerging evidence implicates various proteins targeted for degradation by the UPS in key survival and proliferation signaling pathways of these tumors. In this review, we discuss the involvement of UPS in the regulation of several mediators and effectors of these pathways in malignant gliomas.
Resumo:
Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.
Resumo:
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.
Resumo:
Most organisms use circadian oscillators to coordinate physiological and developmental processes such as growth with predictable daily environmental changes like sunrise and sunset. The importance of such coordination is highlighted by studies showing that circadian dysfunction causes reduced fitness in bacteria and plants, as well as sleep and psychological disorders in humans. Plant cell growth requires energy and water-factors that oscillate owing to diurnal environmental changes. Indeed, two important factors controlling stem growth are the internal circadian oscillator and external light levels. However, most circadian studies have been performed in constant conditions, precluding mechanistic study of interactions between the clock and diurnal variation in the environment. Studies of stem elongation in diurnal conditions have revealed complex growth patterns, but no mechanism has been described. Here we show that the growth phase of Arabidopsis seedlings in diurnal light conditions is shifted 8-12 h relative to plants in continuous light, and we describe a mechanism underlying this environmental response. We find that the clock regulates transcript levels of two basic helix-loop-helix genes, phytochrome-interacting factor 4 (PIF4) and PIF5, whereas light regulates their protein abundance. These genes function as positive growth regulators; the coincidence of high transcript levels (by the clock) and protein accumulation (in the dark) allows them to promote plant growth at the end of the night. Thus, these two genes integrate clock and light signalling, and their coordinated regulation explains the observed diurnal growth rhythms. This interaction may serve as a paradigm for understanding how endogenous and environmental signals cooperate to control other processes.
Resumo:
SUMMARY : Peroxisome proliferator-activated receptor ß/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in various organs, including muscle, adipose tissue and liver. However, nothing is known about the function of PPARß in pancreas, a prime organ in the control of glucose homeostasis. To gain insight into so far hypothetical functions of this PPAR isotype in ß-cell function, we specifically ablated Pparß in the whole epithelial compartment of the pancreas. The mutated mice presented expanded ß-cell mass, possibly, this is due to increased burst of ß-cell proliferation at 2 weeks of age. These PPARß null pancreas mice exhibit hyperinsulinemia-hypoglycaemia starting at 4 weeks of age, due to hyperfunctionality of ß-cell. Gene expression profiling indicated a broad repressive function of PPARß impacting the vesicular and granular compartment, actin cytoskeleton, and metabolism of glucose and fatty acids. Analyses of insulin release from isolated islets revealed accelerated second-phase of glucose-stimulated insulin secretion. Higher levels of PKD and PKCS in mutated animals, in concert with F-actin disassembly, lead to an increased insulin secretion and its associated systemic effects. Enhanced palmitate potentiation of glucose-stimulated insulin secretion in PPARß mutant islets, suggests an important role of this receptor in lipid/glucose metabolism in ß-cell. Taken together, these results provide evidence for PPARß playing a repressive role on ß-cell growth and insulin exocytosis, and shed new light on its metabolic .action. RESUME : Le récepteur nucléaire PPARß (Peroxisome proliferator-activated receptor ß/δ) protège contre l'obésité en réduisant la dyslipidémie et la résistance à l'insuline dans différents organes, comme le muscle, le tissue adipeux et le foie. Cependant, il y a, à ce jour, très peu de connaissance par rapport au rôle de PPARß dans le pancréas, qui est un organe très important dans le contrôle homéostatique du glucose. Afin de comprendre le rôle de cet isotype de PPAR dans le fonctionnement des cellules beta du pancréas, nous avons invalidé le gène Pparß dans tout le compartiment pancréatique de la souris. Ces souris mutantes présentent une augmentation de la masse totale de cellules beta; Cela serait dû à une intense prolifération des cellules beta à 2 semaines après la naissance. Également, ces souris présentent une hyperinsulinémie et une hypoglycémie qui commencent à l'âge de 4 semaines; la raison de ce phénotype serait une hyperactivité des cellules beta. Le profil d'expression génique indique une fonction répressive globale de PPARß en se référant aux compartiments vésiculaire et granulaire, au cytosquelette d'actine, et au métabolisme du glucose et des acides gras. L'analyse de la sécrétion d'insuline par les cellules beta a démontré que la deuxième phase de sécrétion d'insuline après stimulation au glucose est augmentée. Les niveaux élevés de PKD et PKCS dans les îlots pancréatiques de souris mutantes, ainsi qu'une augmentation de la dépolymérisation des filaments d'active génèrent un surplus de sécrétion d'insuline après stimulation au glucose. Les îlots pancréatiques des souris mutantes secrètent plus d'insuline après stimulation au glucose et au palmitate que les îlots de souris contrôles. Ceci suggère un rôle important de PPARß dans le métabolisme des lipides et du glucose des cellules beta. En résumé, ces résultats mettent en évidence un rôle répressif de PPARß dans la croissance des cellules beta et dans l'exocytose d'insuline.