964 resultados para Cell retention systems
Resumo:
Activated platelets bind numerous adhesive and procoagulant proteins by receptor-mediated processes. Although there is little evidence to suggest that these processes are heterogeneous in platelets, we previously found that platelets co-stimulated with collagen and thrombin express functional alpha-granule factor V only on a subpopulation of cells. Here we show that these cells, referred to as 'COAT-platelets', bind additional alpha-granule proteins, including fibrinogen, von Willebrand factor, thrombospondin, fibronectin and alpha2-antiplasmin. These proteins are all transglutaminase substrates, and inhibitors of transglutaminase prevent the production of COAT-platelets. A synthetic transglutaminase substrate (CP15) also binds to COAT-platelets, and analysis by high performance liquid chromatography/mass spectrometry shows that a product is formed with a relative molecular mass (Mr) equal to CP15 plus 176. Serotonin, an abundant component of platelet-dense granules, has an Mr of 176, and fibrinogen isolated from COAT-platelets contains covalently linked serotonin. Synthetic bovine serum albumin-(serotonin)6 binds selectively to COAT-platelets and also inhibits the retention of procoagulant proteins on COAT-platelets. These data indicate that COAT-platelets use serotonin conjugation to augment the retention of procoagulant proteins on their cell surface through an as yet unidentified serotonin receptor.
Resumo:
OBJECTIVES: Wear of attachments leads to a loss of retention and potentially reduces the function of complete dentures. This study evaluated the retention force changes of different prefabricated attachment systems for implant-supported overdentures to estimate the wear constancy and applicability in clinical practice. METHODS: Four prefabricated attachment systems were tested [Group SG: retentive ball attachment (Straumann, Switzerland) with gold matrix, Group ST: retentive ball attachment (Straumann, Switzerland) with titanium spring matrix, Group IB: UNOR i-Ball with Ecco matrix (UNOR, Switzerland) and Group IMZ: IMZ-TwinPlus ball attachment with gold matrix (DENTSPLY Friadent, Germany)]. Ten samples of each system were subjected to 10,000 insertion-separation cycles. RESULTS: Results showed that all types of attachments showed wear, which led to a loss of retention force after an initial increase at the beginning of the wear simulation. Attachments with a plastic retention insert or gold matrices underwent the smallest changes in retention force. The titanium spring system showed the largest changes in retention force and a greater variation between the different cycles and specimen. This behaviour is probably caused by a large fitting tolerance of the titanium spring. CONCLUSIONS: Attachment systems which possess a male and female component of different material composition are preferable. They show smaller changes in the retention force. For retention force increase and wear compensation, an attachment system should be adjustable.
Resumo:
Endoplasmic reticulum (ER)-resident proteins are continually retrieved from the Golgi and returned to the ER by Lys-Asp-Glu-Leu (KDEL) receptors, which bind to an eponymous tetrapeptide motif at their substrate's C terminus. Mice and humans possess three paralogous KDEL receptors, but little is known about their functional redundancy, or if their mutation can be physiologically tolerated. Here, we present a recessive mouse missense allele of the prototypical mammalian KDEL receptor, KDEL ER protein retention receptor 1 (KDELR1). Kdelr1 homozygous mutants were mildly lymphopenic, as were mice with a CRISPR/Cas9-engineered frameshift allele. Lymphopenia was cell intrinsic and, in the case of T cells, was associated with reduced expression of the T-cell receptor (TCR) and increased expression of CD44, and could be partially corrected by an MHC class I-restricted TCR transgene. Antiviral immunity was also compromised, with Kdelr1 mutant mice unable to clear an otherwise self-limiting viral infection. These data reveal a nonredundant cellular function for KDELR1, upon which lymphocytes distinctly depend.
Resumo:
OBJECTIVES The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. METHODS A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. RESULTS Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. SIGNIFICANCE Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier.
Resumo:
Tissue P systems generalize the membrane structure tree usual in original models of P systems to an arbitrary graph. Basic opera- tions in these systems are communication rules, enriched in some variants with cell division or cell separation. Several variants of tissue P systems were recently studied, together with the concept of uniform families of these systems. Their computational power was shown to range between P and NP ? co-NP , thus characterizing some interesting borderlines between tractability and intractability. In this paper we show that com- putational power of these uniform families in polynomial time is limited by the class PSPACE . This class characterizes the power of many clas- sical parallel computing models
Resumo:
Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.
Resumo:
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.
Resumo:
Rolls-Royce fuel cell systems is developing megawatt scale power systems based on solid oxide fuel cell technology. The hybrid design promises to meet challenging energy efficiency, cost and performance targets in a grid friendly fashion. Analysis and testing to date indicate that those targets can be met and enable a wealth of fuel cell applications to meet customer and existing grid and modern grid requirements. Working with a global development team, a series of laboratory tests and evaluations are completed and future field test and evaluation and demonstration planned.
Improving T cell-induced response to subunit vaccines:opportunities for a proteomic systems approach
Resumo:
Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. Objectives: In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. Key findings: Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. Summary: In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Resumo:
Background: Sickle cell disease (SCD) is a debilitating genetic blood disorder that seriously impacts the quality of life of affected individuals and their families. With 85% of cases occurring in sub-Saharan Africa, it is essential to identify the barriers and facilitators of optimal outcomes for people with SCD in this setting. This study focuses on understanding the relationship between support systems and disease outcomes for SCD patients and their families in Cameroon and South Africa.
Methods: This mixed-methods study utilizes surveys and semi-structured interviews to assess the experiences of 29 SCD patients and 28 caregivers of people with SCD across three cities in two African countries: Cape Town, South Africa; Yaoundé, Cameroon; and Limbe, Cameroon.
Results: Patients in Cameroon had less treatment options, a higher frequency of pain crises, and a higher incidence of malaria than patients in South Africa. Social support networks in Cameroon consisted of both family and friends and provided emotional, financial, and physical assistance during pain crises and hospital admissions. In South Africa, patients relied on a strong medical support system and social support primarily from close family members; they were also diagnosed later in life than those in Cameroon.
Conclusions: The strength of medical support systems influences the reliance of SCD patients and their caregivers on social support systems. In Cameroon the health care system does not adequately address all factors of SCD treatment and social networks of family and friends are used to complement the care received. In South Africa, strong medical and social support systems positively affect SCD disease burden for patients and their caregivers. SCD awareness campaigns are necessary to reduce the incidence of SCD and create stronger social support networks through increased community understanding and decreased stigma.
Resumo:
The work presented herein covers a broad range of research topics and so, in the interest of clarity, has been presented in a portfolio format. Accordingly, each chapter consists of its own introductory material prior to presentation of the key results garnered, this is then proceeded by a short discussion on their significance. In the first chapter, a methodology to facilitate the resolution and qualitative assessment of very large inorganic polyoxometalates was designed and implemented employing ion-mobility mass spectrometry. Furthermore, the potential of this technique for ‘mapping’ the conformational space occupied by this class of materials was demonstrated. These claims are then substantiated by the development of a tuneable, polyoxometalate-based calibration protocol that provided the necessary platform for quantitative assessments of similarly large, but unknown, polyoxometalate species. In addition, whilst addressing a major limitation of travelling wave ion mobility, this result also highlighted the potential of this technique for solution-phase cluster discovery. The second chapter reports on the application of a biophotovoltaic electrochemical cell for characterising the electrogenic activity inherent to a number of mutant Synechocystis strains. The intention was to determine the key components in the photosynthetic electron transport chain responsible for extracellular electron transfer. This would help to address the significant lack of mechanistic understanding in this field. Finally, in the third chapter, the design and fabrication of a low-cost, highly modular, continuous cell culture system is presented. To demonstrate the advantages and suitability of this platform for experimental evolution investigations, an exploration into the photophysiological response to gradual iron limitation, in both the ancestral wild type and a randomly generated mutant library population, was undertaken. Furthermore, coupling random mutagenesis to continuous culture in this way is shown to constitute a novel source of genetic variation that is open to further investigation.
Resumo:
Open-cell metal foams show promise as an emerging novel material for heat exchanger applications. The high surface-area-to-volume ratio suggests increased compactness and decrease in weight of heat exchanger designs. However, the metal foam structure appears conducive to condensate retention, which would degenerate heat transfer performance. This research investigates the condensate retention behavior of aluminum open-cell metal foams through the use of static dip tests and geometrical classification via X-ray Micro-Computed Tomography. Aluminum open-cell metal foam samples of 5, 10, 20, and 40 pores per inch (PPI), all having a void fraction greater than 90%, were included in this investigation. In order to model the condensate retention behavior of metal foams, a clearer understanding of the geometry was required. After exploring the ideal geometries presented in the open literature, X-ray Micro-Computed Tomography was employed to classify the actual geometry of the metal foam samples. The images obtained were analyzed using specialized software from which geometric information including strut length and pore shapes were extracted. The results discerned a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The static dip tests consisted of submerging the metal foam samples in a liquid, then allowing gravity-induced drainage until steady-state was reached and the liquid remaining in the metal foam sample was measured. Three different liquids, water, ethylene glycol, and 91% isopropyl alcohol, were employed. The behaviors of untreated samples were compared to samples subjected to a Beomite surface treatment process, and no significant differences in retention behavior were discovered. The dip test results revealed two distinct regions of condensate retention, each holding approximately half of the total liquid retained by the sample. As expected, condensate retention increased as the pores sizes decreased. A model based on surface tension was developed to predict the condensate retention in the metal foam samples and verified using a regular mesh. Applying the model to both the ideal and actual metal foam geometries showed good agreement with the dip test results in this study.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.