782 resultados para Cartilage Degneration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage has poor reparative capacities, and once damaged cartilage lesions remain chronic and can lead to osteoarthritis. Over the last decade, several innovative therapies have been introduced to promote the regeneration of articular cartilage while sustaining sufficient mechanical stress and permitting a pain free motion. An important measure of outcome is the morphological characterization of the repair tissue in order to allow for cross-study evaluation. The International Cartilage Repair Society has developed a analogue visual scale to quantify repair tissue, which is described in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pain in the joint is often due to cartilage degeneration and represents a serious medical problem affecting people of all ages. Although many, mostly surgical techniques, are currently employed to treat cartilage lesions, none has given satisfactory results in the long term. Recent advances in biology and material science have brought tissue engineering to the forefront of new cartilage repair techniques. The combination of autologous cells, specifically designed scaffolds, bioreactors, mechanical stimulations and growth factors together with the knowledge that underlies the principles of cell biology offers promising avenues for cartilage tissue regeneration. The present review explores basic biology mechanisms for cartilage reconstruction and summarizes the advances in the tissue engineering approaches. Furthermore, the limits of the new methods and their potential application in the osteoarthritic conditions are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated whether expanded goat chondrocytes have the capacity to generate cartilaginous tissues with biochemical and biomechanical properties improving with time in culture. Goat chondrocytes were expanded in monolayer with or without combinations of FGF-2, TGF-beta1, and PDGFbb, and the postexpansion chondrogenic capacity assessed in pellet cultures. Expanded chondrocytes were also cultured for up to 6 weeks in HYAFF-M nonwoven meshes or Polyactive foams, and the resulting cartilaginous tissues were assessed histologically, biochemically, and biomechanically. Supplementation of the expansion medium with FGF-2 increased the proliferation rate of goat chondrocytes and enhanced their postexpansion chondrogenic capacity. FGF-2-expanded chondrocytes seeded in HYAFF-M or Polyactive scaffolds formed cartilaginous tissues with wet weight, glycosaminoglycan, and collagen content, increasing from 2 days to 6 weeks culture (up to respectively 2-, 8-, and 41-fold). Equilibrium and dynamic stiffness measured in HYAFF M-based constructs also increased with time, up to, respectively, 1.3- and 16-fold. This study demonstrates the feasibility to engineer goat cartilaginous tissues at different stages of development by varying culture time, and thus opens the possibility to test the effect of maturation stage of engineered cartilage on the outcome of cartilage repair in orthotopic goat models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To perform baseline T(2) mapping of the hips of healthy volunteers, focusing on topographic variation, because no detailed study has involved hips. T(2) mapping is a quantitative magnetic resonance imaging (MRI) technique that evaluates cartilage matrix components. MATERIALS AND METHODS: Hips of 12 healthy adults (six men and six women; mean age = 29.5 +/- 4.9 years) were studied with a 3.0-Tesla MRI system. T(2) measurement in the oblique-coronal plane used a multi-spin-echo (MSE) sequence. Femoral cartilage was divided into 12 radial sections; acetabular cartilage was divided into six radial sections, and each section was divided into two layers representing the superficial and deep halves of the cartilage. T(2) of these sections and layers were measured. RESULTS: Femoral cartilage T(2) was the shortest (-20 degrees to 20 degrees and -10 degrees to 10 degrees , superficial and deep layers), with an increase near the magic angle (54.7 degrees ). Acetabular cartilage T(2) in both layers was shorter in the periphery than the other parts, especially at 20 degrees to 30 degrees . There were no significant differences in T(2) between right and left hips or between men and women. CONCLUSION: Topographic variation exists in hip cartilage T(2) in young, healthy adults. These findings should be taken into account when T(2) mapping is applied to patients with degenerative cartilage. J. Magn. Reson. Imaging 2007;26:165-171. (c) 2007 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to investigate the effect of magnetization transfer on multislice T(1) and T(2) measurements of articular cartilage. MATERIALS AND METHODS: A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA(2-)) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T(1) and T(2) measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T(1) and T(2) values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS: Regarding T(1) measurement, a large drop of T(1) in all slices and also a large interslice variation in T(1) were observed when multislice acquisition was used. Regarding T(2) measurement, a substantial drop of T(2) in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION: This study demonstrated that the adaptation of multislice acquisition technique for T(1) measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T(2) measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account. J. Magn. Reson. Imaging 2007;26:109-117. (c) 2007 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To explore the role of pro-apoptotic signals following tissue injury and how these may promote a progression of further cell death. METHODS: Laser treated porcine articular cartilage disks were maintained in culture media. The collected media at various time periods (3, 6, 9, 12, 24 and 48 h), was called treated conditioned media (TCM). Non-laser treated cartilage disks were used to create control conditioned media (CCM). Each disk was subsequently maintained for 28 days and used in confocal microscopic assessment to document the progression of the damaged area. Isolated porcine chondrocytes were cultured in monolayer, and were exposed to TCM, CCM or normal culture medium (NM). As a positive inducer of apoptosis, the monolayer cells were exposed to UV radiation for 10 min and cultured in NM. Following 24 h exposure, the cells were harvested and stained with the appropriate combination of fluorescent dyes and processed via flow cytometry. RESULTS: All cultured cells exposed to TCM displayed a caspase-3 positive subpopulation, a loss of CMXRos, and with a reduced or lost NO signal. CCM exposure signals were comparable to the NM treatments with all having retained CMXRos, NO and without evidence of caspase-3 activity. UV treatment also induced a reduction in NO, but both CMXRos and caspase-3 positive, representing an earlier stage of apoptosis and suggesting that the mode of cell death via UV and TCM exposure are via different processes. The investigation of a dose (100%, 50%, 25% and 12.5%) and time (0.5, 1, 3, 9, 12 h) response to TCM exhibited that all treatments observed an increase in caspase-3 positive cells and a reduction in NO and CMXRos. CONCLUSION: The usefulness of FCM can be used in the study of cell viability and apoptosis. Such a system may be useful in the study of mechanisms of disease such as osteoarthritis, thus may be of practical use for the pharmaceutical industry for screening associated drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to investigate the biochemical properties, histological and immunohistochemical appearance, and magnetic resonance (MR) imaging findings of reparative cartilage after autologous chondrocyte implantation (ACI) for osteochondritis dissecans (OCD). METHODS: Six patients (mean age 20.2 +/- 8.8 years; 13-35 years) who underwent ACI for full-thickness cartilage defects of the femoral condyle were studied. One year after the procedure, a second-look arthroscopic operation was performed with biopsy of reparative tissue. The International Cartilage Repair Society (ICRS) visual histological assessment scale was used for histological assessment. Biopsied tissue was immunohistochemically analyzed with the use of monoclonal antihuman collagen type I and monoclonal antihuman collagen type II primary antibodies. Glycosaminoglycan (GAG) concentrations in biopsied reparative cartilage samples were measured by high performance liquid chromatography (HPLC). MR imaging was performed with T1- and T2-weighted imaging and three-dimensional spoiled gradient-recalled (3D-SPGR) MR imaging. RESULTS: Four tissue samples were graded as having a mixed morphology of hyaline and fibrocartilage while the other two were graded as fibrocartilage. Average ICRS scores for each criterion were (I) 1.0 +/- 1.5; (II) 1.7 +/- 0.5; (III) 0.6 +/- 1.0; (IV) 3.0 +/- 0.0; (V) 1.8 +/- 1.5; and (VI) 2.5 +/- 1.2. Average total score was 10.7 +/- 2.8. On immunohistochemical analysis, the matrix from deep and middle layers of reparative cartilage stained positive for type II collagen; however, the surface layer did not stain well. The average GAG concentration in reparative cartilage was 76.6 +/- 4.2 microg/mg whereas that in normal cartilage was 108 +/- 11.2 microg/mg. Common complications observed on 3D-SPGR MR imaging were hypertrophy of grafted periosteum, edema-like signal in bone marrow, and incomplete repair of subchondral bone at the surgical site. Clinically, patients had significant improvements in Lysholm scores. CONCLUSIONS: In spite of a good clinical course, reparative cartilage after ACI had less GAG concentration and was inferior to healthy hyaline cartilage in histological and immunohistochemical appearance and on MRI findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rheumatology and joint research, as in other fields, a purely descriptional appqoach to morphology cannot satisfy the exactions of modern clinical medicine. Investigators now appreciate the need to gauge pathological changes and their response to treatment by quantifying susceptible structural parameters. But the desired information respecting three-dimensional structures must be gleaned from either actual or virtual two-dimensional sections through the tissue. This information can be obtained only if the laws governing stereology are respected. In this chapter, the stereological principles that must be applied, and the practical methods that have been devised, to yield unbiased estimates of the most commonly determined structural parameters, namely, volume, surface area and number, are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synovium contains mesenchymal stem cells with chondrogenic potential. Although synovial and articular cartilage tissue develop from a common pool of mesenchymal cells, little is known about their genetic commonalities. In the present study, the mRNA levels for several cartilage-related proteins, namely, cartilage oligomeric matrix protein (COMP), Sox9, aggrecan, and collagen types I, II, IX, X, and XI, were measured using the real-time polymerase chain reaction. Our data reveal the synovium of calf metacarpal joints to physiologically express not only type I collagen but also COMP, Sox9, aggrecan, and collagen types X and XI. The mRNA levels for the latter five proteins lie between 2% and 15% of those in articular cartilage. We speculate that these genes are being expressed by chondroprogenitor cells, whose presence in the synovium reflects a common ontogenetic phase in the fetal development of this tissue and of articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To demonstrate the feasibility of time-reversed fast imaging with steady-state precession (FISP) called PSIF for diffusion-weighted imaging of cartilage and cartilage transplants in a clinical study. MATERIAL AND METHODS: In a cross-sectional study 15 patients underwent MRI using a 3D partially balanced steady-state gradient echo pulse sequence with and without diffusion weighting at two different time points after matrix-associated autologous cartilage transplantation (MACT). Mean diffusion quotients (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) within the cartilage transplants were compared to diffusion quotients found in normal cartilage. RESULTS: The global diffusion quotient found in repair cartilage was significantly higher than diffusion values in normal cartilage (p<0.05). There was a decrease between the earlier and the later time point after surgery. CONCLUSIONS: In-vivo diffusion-weighted imaging based on the PSIF technique is possible. Our preliminary results show follow-up of cartilage transplant maturation in patients may provide additional information to morphological assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Implementation of an experimental model to compare cartilage MR imaging by means of histological analyses. MATERIAL AND METHODS: MRI was obtained from 4 patients expecting total knee replacement at 1.5 and/or 3T prior surgery. The timeframe between pre-op MRI and knee replacement was within two days. Resected cartilage-bone samples were tagged with Ethi((R))-pins to reproduce the histological cutting course. Pre-operative scanning at 1.5T included following parameters for fast low angle shot (FLASH: TR/TE/FA=33ms/6ms/30 degrees , BW=110kHz, 120mmx120mm FOV, 256x256 matrix, 0.65mm slice-thickness) and double echo steady state (DESS: TR/TE/FA=23.7ms/6.9ms/40 degrees , BW=130kHz, 120x120mm FOV, 256x256 matrix, 0.65mm slice-thickness). At 3T, scan parameters were: FLASH (TR/TE/FA=12.2ms/5.1ms/10 degrees , BW=130kHz, 170x170mm FOV, 320x320, 0.5mm slice-thickness) and DESS (TR/TE/FA=15.6ms/4.5ms/25 degrees , BW=200kHz, 135mmx150mm FOV, 288x320matrix, 0.5mm slice-thickness). Imaging of the specimens was done the same day at 1.5T. MRI (Noyes) and histological (Mankin) score scales were correlated using the paired t-test. Sensitivity and specificity for the detection of different grades of cartilage degeneration were assessed. Inter-reader and intra-reader reliability was determined using Kappa analysis. RESULTS: Low correlation (sensitivity, specificity) was found for both sequences in normal to mild Mankin grades. Only moderate to severe changes were diagnosed with higher significance and specificity. The use of higher field-strengths was advantageous for both protocols with sensitivity values ranging from 13.6% to 93.3% (FLASH) and 20.5% to 96.2% (DESS). Kappa values ranged from 0.488 to 0.944. CONCLUSIONS: Correlating MR images with continuous histological slices was feasible by using three-dimensional imaging, multi-planar-reformat and marker pins. The capability of diagnosing early cartilage changes with high accuracy could not be proven for both FLASH and DESS.