874 resultados para Cardiac Ischemia
Resumo:
Background/Aims Timely access to appropriate cardiac care is critical for optimizing positive outcomes after a cardiac event. Attendance at cardiac rehabilitation (CR) remains less than optimal (10%–30%). Our aim was to derive an objective, comparable, geographic measure reflecting access to cardiac services after a cardiac event in Australia. Methods An expert panel defined a single patient care pathway and a hierarchy of the minimum health services for CR and secondary prevention. Using geographic information systems a numeric/alpha index was modelled to describe access before and after a cardiac event. The aftercare phase was modelled into five alphabetical categories: from category A (access to medical service, pharmacy, CR, pathology within 1 h) to category E (no services available within 1 h). Results Approximately 96% or 19 million people lived within 1 h of the four basic services to support CR and secondary prevention, including 96% of older Australians and 75% of the indigenous population. Conversely, 14% (64,000) indigenous people resided in population locations that had poor access to health services that support CR after a cardiac event. Conclusion Results demonstrated that the majority of Australians had excellent ‘geographic’ access to services to support CR and secondary prevention. Therefore, it appears that it is not the distance to services that affects attendance. Our ‘geographic’ lens has identified that more research on socioeconomic, sociological or psychological aspects to attendance is needed.
Resumo:
PURPOSE: To test the reliability of Timed Up and Go Tests (TUGTs) in cardiac rehabilitation (CR) and compare TUGTs to the 6-Minute Walk Test (6MWT) for outcome measurement. METHODS: Sixty-one of 154 consecutive community-based CR patients were prospectively recruited. Subjects undertook repeated TUGTs and 6MWTs at the start of CR (start-CR), postdischarge from CR (post-CR), and 6 months postdischarge from CR (6 months post-CR). The main outcome measurements were TUGT time (TUGTT) and 6MWT distance (6MWD). RESULTS: Mean (SD) TUGTT1 and TUGTT2 at the 3 assessments were 6.29 (1.30) and 5.94 (1.20); 5.81 (1.22) and 5.53 (1.09); and 5.39 (1.60) and 5.01 (1.28) seconds, respectively. A reduction in TUGTT occurred between each outcome point (P ≤ .002). Repeated TUGTTs were strongly correlated at each assessment, intraclass correlation (95% CI) = 0.85 (0.76–0.91), 0.84 (0.73–0.91), and 0.90 (0.83–0.94), despite a reduction between TUGTT1 and TUGTT2 of 5%, 5%, and 7%, respectively (P ≤ .006). Relative decreases in TUGTT1 (TUGTT2) occurred from start-CR to post-CR and from start-CR to 6 months post-CR of −7.5% (−6.9%) and −14.2% (−15.5%), respectively, while relative increases in 6MWD1 (6MWD2) occurred, 5.1% (7.2%) and 8.4% (10.2%), respectively (P < .001 in all cases). Pearson correlation coefficients for 6MWD1 to TUGTT1 and TUGTT2 across all times were −0.60 and −0.68 (P < .001) and the intraclass correlations (95% CI) for the speeds derived from averaged 6MWDs and TUGTTs were 0.65 (0.54, 0.73) (P < .001). CONCLUSIONS: Similar relative changes occurred for the TUGT and the 6MWT in CR. A significant correlation between the TUGTT and 6MWD was demonstrated, and we suggest that the TUGT may provide a related or a supplementary measurement of functional capacity in CR.
Resumo:
The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying 11 positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.