970 resultados para Carbon Footprint Calculators


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Home Automation holds the potential of realizing cost savings for end users while reducing the carbon footprint of domestic energy consumption. Yet, adoption is still very low. High cost of vendor-supplied home automation systems is a major prohibiting factor. Open source systems such as FHEM, Domoticz, OpenHAB etc. are a cheaper alternative and can drive the adoption of home automation. Moreover, they have the advantage of not being limited to a single vendor or communication technology which gives end users flexibility in the choice of devices to include in their installation. However, interaction with devices having diverse communication technologies can be inconvenient for users thus limiting the utility they derive from it. For application developers, creating applications which interact with the several technologies in the home automation systems is not a consistent process. Hence, there is the need for a common description mechanism that makes interaction smooth for end users and which enables application developers to make home automation applications in a consistent and uniform way. This thesis proposes such a description mechanism within the context of an open source home automation system – FHEM, together with a system concept for its application. A mobile application was developed as a proof of concept of the proposed description mechanism and the results of the implementation are reflected upon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Centro de Desenvolvimento Sustentável, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) did not perform as well and remained sticky even after several weeks of curing, most likely due to the lack of Al which is believed to cause hardening in geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine glass. This research has shown that glass has great potential for use in geopolymers, when care is given to consider the compositional and physical properties of the glass in mixture design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To finance transportation infrastructure and to address social and environmental negative externalities of road transports, several countries have recently introduced or consider a distance based tax on trucks. In competitive retail and transportation markets, such tax can be expected to lower the demand and thereby reduce CO2 emissions of road transports. However, as we show in this paper, such tax might also slow down the transition towards e-tailing. Considering that previous research indicates that a consumer switching from brick-and-mortar shopping to e-tailing reduces her CO2 emissions substantially, the direction and magnitude of the environmental net effect of the tax is unclear. In this paper, we assess the net effect in a Swedish regional retail market where the tax not yet is in place. We predict the net effect on CO2 emissions to be positive, but off-set by about 50% because of a slower transition to e-tailing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ecological footprint of food transport can be communicated using carbon dioxide emissions (CO2 label) or by providing information about both the length of time and the mileage travelled (food miles label). We use stated choice data to estimate conventional unobserved taste heterogeneity models and extend them to a specification that also addresses attribute nonattendance. The implied posterior distributions of the marginal willingness to pay values are compared graphically and are used in validation regressions. We find strong bimodality of taste distribution as the emerging feature, with different groups of subjects having low and high valuations for these labels. The best fitting model shows that CO2 and food miles valuations are much correlated. CO2 valuations can be high even for those respondents expressing low valuations for food miles. However, the reverse is not true. Taken together, the results suggest that consumers tend to value the CO2 label at least as much and sometimes more than the food miles label.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of a benchmarking mechanism specifically designed for local requirements and characteristics, a carbon dioxide footprint assessment and labelling scheme for construction materials is urgently needed to promote carbon dioxide reduction in the construction industry. This paper reports on a recent interview survey of 18 senior industry practitioners in Hong Kong to elicit their knowledge and opinions concerning the potential of such a carbon dioxide labelling scheme. The results of this research indicate the following. A well-designed carbon dioxide label could stimulate demand for low carbon dioxide construction materials. The assessment of carbon dioxide emissions should be extended to different stages of material lifecycles. The benchmarks for low carbon dioxide construction materials should be based on international standards but without sacrificing local integrity. Administration and monitoring of the carbon dioxide labelling scheme could be entrusted to an impartial and independent certification body. The implementation of any carbon dioxide labelling schemes should be on a voluntary basis. Cost, functionality, quality and durability are unlikely to be replaced by environmental considerations in the absence of any compelling incentives or penalties. There are difficulties in developing and operating a suitable scheme, particularly in view of the large data demands involved, reluctance in using low carbon dioxide materials and limited environmental awareness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines a large structural component and its supply chain. The component is representative of that used in the production of civil transport aircraft and is manufactured from carbon fibre epoxy resin prepreg, using traditional hand layup and autoclave cure. Life cycle assessment (LCA) is used to predict the component’s production carbon emissions. The results determine the distribution of carbon emissions within the supply chain, identifying the dominant production processes as carbon fibre manufacture and composite part manufacture. The elevated temperature processes of material and part creation, and the associated electricity usage, have a significant impact on the overall production emissions footprint. The paper also demonstrates the calculation of emissions footprint sensitivity to the geographic location and associated energy sources of the supply chain. The results verify that the proposed methodology is capable of quantitatively linking component and supply chain specifics to manufacturing processes and thus identifying the design drivers for carbon emissions in the manufacturing life of the component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study applies spatial statistical techniques including cokriging to integrate airborne geophysical (radiometric) data with ground-based measurements of peat depth and soil organic carbon (SOC) to monitor change in peat cover for carbon stock calculations. The research is part of the EU funded Tellus Border project and is supported by the INTERREG IVA development programme of the European Regional Development Fund, which is managed by the Special EU Programmes Body (SEUPB). The premise is that saturated peat attenuates the radiometric signal from underlying soils and rocks. Contemporaneous ground-based measurements were collected to corroborate mapped estimates and develop a statistical model for volumetric carbon content (VCC) to 0.5 metres. Field measurements included ground penetrating radar, gamma ray spectrometry and a soil sampling methodology which measured bulk density and soil moisture to determine VCC. One aim of the study was to explore whether airborne radiometric survey data can be used to establish VCC across a region. To account for the footprint of airborne radiometric data, five cores were obtained at each soil sampling location: one at the centre of the ground radiometric equivalent sample location and one at each of the four corners 20 metres apart. This soil sampling strategy replicated the methodology deployed for the Tellus Border geochemistry survey. Two key issues will be discussed from this work. The first addresses the integration of different sampling supports for airborne and ground measured data and the second discusses the compositional nature of the VOC data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy-covariance measurements of carbon dioxide fluxes were taken semi-continuously between October 2006 and May 2008 at 190 m height in central London (UK) to quantify emissions and study their controls. Inner London, with a population of 8.2 million (~5000 inhabitants per km2) is heavily built up with 8% vegetation cover within the central boroughs. CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). The measurement period allowed investigation of both diurnal patterns and seasonal trends. Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity that controlled the seasonal variability. Despite measurements being taken at ca. 22 times the mean building height, coupling with street level was adequate, especially during daytime. Night-time saw a higher occurrence of stable or neutral stratification, especially in autumn and winter, which resulted in data loss in post-processing. No significant difference was found between the annual estimate of net exchange of CO2 for the expected measurement footprint and the values derived from the National Atmospheric Emissions Inventory (NAEI), with daytime fluxes differing by only 3%. This agreement with NAEI data also supported the use of the simple flux footprint model which was applied to the London site; this also suggests that individual roughness elements did not significantly affect the measurements due to the large ratio of measurement height to mean building height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Boston Red Sox emit a great deal of carbon throughout the regular baseball season because of flights to the home fields of their opponents. Knowing that air travel is one of the biggest transportation-based contributors to global climate change, the Boston Red Sox (and all major league teams) should be encouraged to offset their carbon emissions from regular season travel. Using ArcGIS to map the flight paths along great circle routes, the distance of flights to opponents’ cities was calculated to total the number of miles traveled in the 2008 season. The price of offsetting this carbon was estimated using the calculators of carbon offset retailers, such as Native Energy, a Vermont-based retailer. This project provides the potential costs of offsetting the carbon emitted from Red Sox air travel. To take the lead in the future of the Northeast, the Red Sox should begin to consider their contribution to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turfgrasses are ubiquitous in urban landscape and their role on carbon (C) cycle is increasing important also due to the considerable footprint related to their management practices. It is crucial to understand the mechanisms driving the C assimilation potential of these terrestrial ecosystems Several approaches have been proposed to assess C dynamics: micro-meteorological methods, small-chamber enclosure system (SC), chrono-sequence approach and various models. Natural and human-induced variables influence turfgrasses C fluxes. Species composition, environmental conditions, site characteristics, former land use and agronomic management are the most important factors considered in literature driving C sequestration potential. At the same time different approaches seem to influence C budget estimates. In order to study the effect of different management intensities on turfgrass, we estimated net ecosystem exchange (NEE) through a SC approach in a hole of a golf course in the province of Verona (Italy) for one year. The SC approach presented several advantages but also limits related to the measurement frequency, timing and duration overtime, and to the methodological errors connected to the measuring system. Daily CO2 fluxes changed according to the intensity of maintenance, likely due to different inputs and disturbances affecting biogeochemical cycles, combined also to the different leaf area index (LAI). The annual cumulative NEE decreased with the increase of the intensity of management. NEE was related to the seasonality of turfgrass, following temperatures and physiological activity. Generally on the growing season CO2 fluxes towards atmosphere exceeded C sequestered. The cumulative NEE showed a system near to a steady state for C dynamics. In the final part greenhouse gases (GHGs) emissions due to fossil fuel consumption for turfgrass upkeep were estimated, pinpointing that turfgrass may result a considerable C source. The C potential of trees and shrubs needs to be considered to obtain a complete budget.