947 resultados para Cancer systems biology
Resumo:
Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their alpha and beta subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer. In this study, we analyzed integrin regulation, mediated by adaptor binding to the subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the 5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The alpha5-ZO-1 complex formation was dependent on PKC which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the alpha5beta-ZO-1 complex. Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.
Resumo:
Sexual dimorphism is commonly understood as differences in external features, such as morphological features or coloration. However, it can more broadly encompass behavior and physiology and at the core of these differences is the genetic mechanism – mRNA and protein expression. How, and which, molecular mechanisms influence sexually dimorphic features is not well understood thus far. DNA, RNA and proteins are the template required to create the phenotype of an individual, and they are connected to each other via processes of transcription and translation. As the genome of males and females are almost identical with the exception of the few genes on the sex chromosome or the sex-determining alleles (in the case of organisms without sex chromosomes), it is likely that many of the downstream processes resulting in sexual dimorphism are produced by changes in gene regulation and result from a regulatory cascade and not from a vastly different gene composition. Thus, in this thesis a systems biology approach is used to understand sexual dimorphism at all molecular levels and how different genomic features, e.g. sex chromosome evolution, can affect the interplay of these molecules. The threespine stickleback, Gasterosteus aculeatus, is used as the model to investigate molecular mechanisms of sexual dimorphism. It has well-characterized ecology and behavior, especially in the breeding season when sexual dimorphism is high. Moreover, threespine stickleback has a recently evolved Y chromosome in the early stages of sex chromosome evolution, characterized by a lack of recombination leading to degeneration (i.e. gene loss). The aim of my thesis is to investigate how the genotype links to the molecular phenotype and relates to differences in molecular expression between males and females. Based on previous research on sex differences in mRNA expression, I investigated sex-biased protein expression in adult fish outside the breeding season to see if differences persisted after translation. As sex-biased expression also prevailed in the proteome and previous transcription expression seemed to be related to the sex chromosomes, I investigated the genome level with a particular focus on the sex-chromosomes. I characterized the status of Y chromosome degeneration in the threespine stickleback and its effects on gene function. Furthermore, since the degeneration process leaves genes in a single copy in males, I examined whether the resulting dosage difference of messenger RNA for hemizygous genes is compensated as it is in other organisms. In addition, threespine sticklebacks have wellcharacterized behavioral differences related to the male’s social status during the breeding season. To understand the connection between the genotype and behavior, I examined gene expression patterns related to breeding behavior using dominant and subordinate males as well as female
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
La phagocytose est un processus cellulaire par lequel de larges particules sont internalisées dans une vésicule, le phagosome. Lorsque formé, le phagosome acquiert ses propriétés fonctionnelles à travers un processus complexe de maturation nommé la biogénèse du phagolysosome. Cette voie implique une série d’interactions rapides avec les organelles de l’appareil endocytaire permettant la transformation graduelle du phagosome nouvellement formé en phagolysosome à partir duquel la dégradation protéolytique s’effectue. Chez l’amibe Dictyostelium discoideum, la phagocytose est employée pour ingérer les bactéries de son environnement afin de se nourrir alors que les organismes multicellulaires utilisent la phagocytose dans un but immunitaire, où des cellules spécialisées nommées phagocytes internalisent, tuent et dégradent les pathogènes envahissant de l’organisme et constitue la base de l’immunité innée. Chez les vertébrés à mâchoire cependant, la transformation des mécanismes moléculaires du phagosome en une organelle perfectionnée pour l’apprêtement et la présentation de peptides antigéniques place cette organelle au centre de l’immunité innée et de l’immunité acquise. Malgré le rôle crucial auquel participe cette organelle dans la réponse immunitaire, il existe peu de détails sur la composition protéique et l’organisation fonctionnelles du phagosome. Afin d’approfondir notre compréhension des divers aspects qui relient l’immunité innée et l’immunité acquise, il devient essentiel d’élargir nos connaissances sur les fonctions moléculaire qui sont recrutées au phagosome. Le profilage par protéomique à haut débit de phagosomes isolés fut extrêmement utile dans la détermination de la composition moléculaire de cette organelle. Des études provenant de notre laboratoire ont révélé les premières listes protéiques identifiées à partir de phagosomes murins sans toutefois déterminer le ou les rôle(s) de ces protéines lors du processus de la phagocytose (Brunet et al, 2003; Garin et al, 2001). Au cours de la première étude de cette thèse (Stuart et al, 2007), nous avons entrepris la caractérisation fonctionnelle du protéome entier du phagosome de la drosophile en combinant diverses techniques d’analyses à haut débit (protéomique, réseaux d’intéractions protéique et ARN interférent). En utilisant cette stratégie, nous avons identifié 617 protéines phagosomales par spectrométrie de masse à partir desquelles nous avons accru cette liste en construisant des réseaux d’interactions protéine-protéine. La contribution de chaque protéine à l’internalisation de bactéries fut ensuite testée et validée par ARN interférent à haut débit et nous a amené à identifier un nouveau régulateur de la phagocytose, le complexe de l’exocyst. En appliquant ce modèle combinatoire de biologie systémique, nous démontrons la puissance et l’efficacité de cette approche dans l’étude de processus cellulaire complexe tout en créant un cadre à partir duquel il est possible d’approfondir nos connaissances sur les différents mécanismes de la phagocytose. Lors du 2e article de cette thèse (Boulais et al, 2010), nous avons entrepris la caractérisation moléculaire des étapes évolutives ayant contribué au remodelage des propriétés fonctionnelles de la phagocytose au cours de l’évolution. Pour ce faire, nous avons isolé des phagosomes à partir de trois organismes distants (l’amibe Dictyostelium discoideum, la mouche à fruit Drosophila melanogaster et la souris Mus musculus) qui utilisent la phagocytose à des fins différentes. En appliquant une approche protéomique à grande échelle pour identifier et comparer le protéome et phosphoprotéome des phagosomes de ces trois espèces, nous avons identifié un cœur protéique commun à partir duquel les fonctions immunitaires du phagosome se seraient développées. Au cours de ce développement fonctionnel, nos données indiquent que le protéome du phagosome fut largement remodelé lors de deux périodes de duplication de gènes coïncidant avec l’émergence de l’immunité innée et acquise. De plus, notre étude a aussi caractérisée en détail l’acquisition de nouvelles protéines ainsi que le remodelage significatif du phosphoprotéome du phagosome au niveau des constituants du cœur protéique ancien de cette organelle. Nous présentons donc la première étude approfondie des changements qui ont engendré la transformation d’un compartiment phagotrophe à une organelle entièrement apte pour la présentation antigénique.
Resumo:
La différentiation entre le « soi » et le « non-soi » est un processus biologique essentiel à la vie. Les peptides endogènes présentés par les complexes majeurs d’histocompatibilité de classe I (CMH I) représentent le fondement du « soi » pour les lymphocytes T CD8+. On donne le nom d’immunopeptidome à l’ensemble des peptides présentés à la surface cellulaire par les molécules du CMH I. Nos connaissances concernant l’origine, la composition et la plasticité de l’immunopeptidome restent très limitées. Dans le cadre de cette thèse, nous avons développé une nouvelle approche par spectrométrie de masse permettant de définir avec précision : la nature et l’abondance relative de l’ensemble des peptides composant l’immunopeptidome. Nous avons trouvé que l’immunopeptidome, et par conséquent la nature du « soi » immun, est surreprésenté en peptides provenant de transcrits fortement abondants en plus de dissimuler une signature tissu-spécifique. Nous avons par la suite démontré que l’immunopeptidome est plastique et modulé par l’activité métabolique de la cellule. Nous avons en effet constaté que les modifications du métabolisme cellulaire par l’inhibition de mTOR (de l’anglais mammalian Target Of Rapamycin) provoquent des changements dynamiques dans la composition de l’immunopeptidome. Nous fournissons également la première preuve dans l’étude des systèmes que l’immunopeptidome communique à la surface cellulaire l’activité de certains réseaux biochimiques ainsi que de multiples événements métaboliques régulés à plusieurs niveaux à l’intérieur de la cellule. Nos découvertes ouvrent de nouveaux horizons dans les domaines de la biologie des systèmes et de l’immunologie. En effet, notre travail de recherche suggère que la composition de l’immunopeptidome est modulée dans l’espace et le temps. Il est par conséquent très important de poursuivre le développement de méthodes quantitatives au niveau des systèmes qui nous permettront de modéliser la plasticité de l’immunopeptidome. La simulation et la prédiction des variations dans l’immunopeptidome en réponse à différents facteurs cellulaires intrinsèques et extrinsèques seraient hautement pertinentes pour la conception de traitements immunothérapeutiques.
Rôle du système du trijumeau dans la locomotion chez le nouveau-né d’opossum (Monodelphis domestica)
Resumo:
L’opossum Monodelphis domestica naît très immature et grimpe sans aide de la mère, du sinus urogénital à une mamelle où il va s’attacher pour poursuivre son développement. Des informations sensorielles sont nécessaires pour guider le nouveau-né vers la mamelle et les candidats les plus probables sont le toucher, l’équilibre et l’olfaction. Pour tester l’action des différents systèmes sur la motricité chez l’opossum nouveau-né, des régions céphaliques du trijumeau, du vestibulaire et de l’olfaction ont été stimulées électriquement sur des préparations in vitro en comparaison avec une stimulation seuil T (intensité minimale de la stimulation à la moelle épinière cervicale induisant le mouvement des membres antérieurs). Par comparaison, un mouvement similaire était induit par des stimulations à ~2T du ganglion du trijumeau, à ~20 T du complexe vestibulaire, et à ~600 T des bulbes olfactifs. L’étude de l'innervation de la peau faciale et des voies relayant les informations du trijumeau vers la moelle épinière (ME) a été approfondie en utilisant de l’immunohistochimie pour les neurofilament-200 et du traçage rétrograde avec du Texas-Red couplé à des Dextrans Aminés. De nombreuses fibres nerveuses ont été révélées dans le derme de plusieurs régions de la tête. Quelques cellules du ganglion trigéminal projettent à la ME rostrale, mais la majorité projette vers la médulla caudale où se trouvent les neurones secondaires du trijumeau ou des cellules réticulospinales. Les résultats de cette étude indiquent une influence significative des systèmes du trijumeau et du vestibulaire, mais pas de l'olfaction, sur le mouvement des membres antérieurs des opossums nouveau-nés.
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
Zusammenfassung - Der sekundäre Botenstoff zyklisches Adenosinmonophosphat (cAMP) reguliert viele fundamentale zelluläre Prozesse wie Zellproliferation, Differenzierung, Energiemetabolismus und Genexpression. In eukaryotischen Zellen vermittelt die cAMP-abhängige Proteinkinase (PKA) die meisten biologischen Funktionen von cAMP. Die PKA besteht aus jeweils zwei regulatorischen (R) und katalytischen (C) Untereinheiten, die zusammen einen inaktiven Holoenzymkomplex bilden, der durch cAMP aktiviert wird. In dieser Arbeit wurde die Bindung von cAMP und cAMP-Analoga an die R Untereinheit der PKA unter funktionellen und mechanistischen Aspekten untersucht. Eine neue, auf Fluoreszenzpolarisation basierende Methode wurde entwickelt, um die Affinität von cAMP-Analoga in einem homogenen Ansatz schnell, reproduzierbar und nicht radioaktiv zu quantifizieren. Zur detaillierten Untersuchung des Bindungsmechanismus von cAMP und cAMP Analoga (Agonisten und Antagonisten) wurden thermodynamische Studien im direkten Vergleich mittels isothermaler Titrationskalorimetrie und kinetischen Analysen (Oberflächenplasmonresonanz, SPR) durchgeführt, wodurch thermodynamische Signaturen für das Bindungsverhalten der Nukleotide an die R Untereinheit der PKA erhalten werden konnten. Durch Interaktionsstudien an mutagenisierten R Untereinheiten wurde der intramolekulare Aktivierungsmechanismus der PKA in Bezug auf cAMP-Bindung, Holoenzymkomplex-Formierung und -Aktivierung untersucht. Die dabei erhaltenen Ergebnisse wurden mit zwei Modellen der cAMP-induzierten Konformationsänderung verglichen, und ein Aktivierungsmechanismus postuliert, der auf konservierten hydrophoben Aminosäuren basiert. Für in vivo Untersuchungen wurden zusammen mit Kooperationspartnern membranpermeable, fluoreszierende cAMP Analoga entwickelt, die Einblicke in die Dynamik der cAMP-Verteilung in Zellen erlauben. Neu entwickelte, Festphasen gebundene cAMP-Analoga (Agonisten und Antagonisten) wurden in einem (sub)proteomischen Ansatz dazu genutzt, natürliche Komplexe der R Untereinheit und des PKA-Holoenzyms aus Zelllysaten zu isolieren und zu identifizieren. Diese Untersuchungen fließen letztlich in einem systembiologischen Ansatz zusammen, der neue Einblicke in die vielschichtigen cAMP gesteuerten Netzwerke und Regulationsprozesse erlaubt.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) is a key technique in mass spectrometry (MS)-based proteomics. MALDI MS is extremely sensitive, easy-to-apply, and relatively tolerant to contaminants. Its high-speed data acquisition and large-scale, off-line sample preparation has made it once again the focus for high-throughput proteomic analyses. These and other unique properties of MALDI offer new possibilities in applications such as rapid molecular profiling and imaging by MS. Proteomics and its employment in Systems Biology and other areas that require sensitive and high-throughput bioanalytical techniques greatly depend on these methodologies. This chapter provides a basic introduction to the MALDI methodology and its general application in proteomic research. It describes the basic MALDI sample preparation steps and two easy-to-follow examples for protein identification including extensive notes on these topics with practical tips that are often not available in the Subheadings 2 and 3 of research articles.
Resumo:
The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.
Resumo:
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.
Resumo:
Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand-in-hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models. WIREs Syst Biol Med 2012 doi: 10.1002/wsbm.1168 For further resources related to this article, please visit the WIREs website.
Resumo:
Background and aims: GP-TCM is the 1st EU-funded Coordination Action consortium dedicated to traditional Chinese medicine (TCM) research. This paper aims to summarise the objectives, structure and activities of the consortium and introduces the position of the consortium regarding good practice, priorities, challenges and opportunities in TCM research. Serving as the introductory paper for the GPTCM Journal of Ethnopharmacology special issue, this paper describes the roadmap of this special issue and reports how the main outputs of the ten GP-TCM work packages are integrated, and have led to consortium-wide conclusions. Materials and methods: Literature studies, opinion polls and discussions among consortium members and stakeholders. Results: By January 2012, through 3 years of team building, the GP-TCM consortium had grown into a large collaborative network involving ∼200 scientists from 24 countries and 107 institutions. Consortium members had worked closely to address good practice issues related to various aspects of Chinese herbal medicine (CHM) and acupuncture research, the focus of this Journal of Ethnopharmacology special issue, leading to state-of-the-art reports, guidelines and consensus on the application of omics technologies in TCM research. In addition, through an online survey open to GP-TCM members and non-members, we polled opinions on grand priorities, challenges and opportunities in TCM research. Based on the poll, although consortium members and non-members had diverse opinions on the major challenges in the field, both groups agreed that high-quality efficacy/effectiveness and mechanistic studies are grand priorities and that the TCM legacy in general and its management of chronic diseases in particular represent grand opportunities. Consortium members cast their votes of confidence in omics and systems biology approaches to TCM research and believed that quality and pharmacovigilance of TCM products are not only grand priorities, but also grand challenges. Non-members, however, gave priority to integrative medicine, concerned on the impact of regulation of TCM practitioners and emphasised intersectoral collaborations in funding TCM research, especially clinical trials. Conclusions: The GP-TCM consortium made great efforts to address some fundamental issues in TCM research, including developing guidelines, as well as identifying priorities, challenges and opportunities. These consortium guidelines and consensus will need dissemination, validation and further development through continued interregional, interdisciplinary and intersectoral collaborations. To promote this, a new consortium, known as the GP-TCM Research Association, is being established to succeed the 3-year fixed term FP7 GP-TCM consortium and will be officially launched at the Final GP-TCM Congress in Leiden, the Netherlands, in April 2012.
Resumo:
Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.
Resumo:
Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.