993 resultados para California. Legislature.
Resumo:
From left to right: Lotte Stern, Otto Wallerstein, Alfred Stern; Photograph taken shortly after arrival in Berkeley, California
Resumo:
Left to Right: Ernest Goldschmidt, Ilse Goldschmidt born Molling, and Frank Goldschmidt. The picture was taken on the occasion of Ilse's 80th birthday party 22 Dec 1989 Laguna Hills, CA.
Resumo:
Digital Image
Resumo:
Digital Image
Albert and Elsa Einstein on the beach with Walter Adams; Santa Barbara, California Portraits; Groups
Resumo:
Digital Image
Resumo:
From left to right: Lotte Stern, Otto Wallerstein, Alfred Stern; Photograph taken shortly after arrival in Berkeley, California
Resumo:
left to right: Margot Molling, Ilse Molling, Adolf Molling, Paul Goldschmidt (husband of Ilse Molling)
Resumo:
Digital Image
Resumo:
Verso: "Er sinnt in der Wueste"
Resumo:
Digital image
Resumo:
Plant regeneration from mesophyll protoplasts of pepper, Capsicum annuum L. cv. California Wonder has been demonstrated via shoot organogenesis, Protoplasts isolated from fully expanded leaves of 3-week-old axenic shoots when cultured in TM medium supplemented with 1 mgl(-1) NAA, 1 mgl(-1) 2, 4-D, 0.5 mgl(-1) BAP (CM 1) resulted in divisions with a frequency ranging from 20-25%. Antioxidant ascorbic acid and polyvinylpyrrolidone (PVP) in the medium and incubation in the dark helped overcome browning of protoplasts. Microcalli and macrocalli were formed in TM medium containing 2 mgl(-1) NAA and 0.5 mgl(-1) BAP (CM II) and MS gelled medium containing 2 mgl(-1) NAA and 0.5 mgl(-1) BAP (CM III), respectively, Regeneration of plantlets was possible via caulogenesis, Microshoots, 2-5 per callus appeared on MS gelled medium enriched with 0.5 mgl(-1) IAA, 2 mgl(-1) GA and 10 mgl(-1) BAP (CM IVc). Rooting of microshoots was obtained on half strength gelled medium containing 1 mgl(-1) NAA and 0.5 mgl(-1) BAP, Protoplasts isolated from cotyledons failed to divide and degenerated eventually.
Resumo:
Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.