999 resultados para Calculated from stable oxygen isotopes
Resumo:
Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.
Resumo:
Reliable temperature estimates from both surface and subsurface ocean waters are needed to reconstruct past upper water column temperature gradients and past oceanic heat content. This work examines the relationships between trace element ratios in fossil shells and seawater temperature for surface-dwelling foraminifera species, Globigerinoides ruber (white) and Globigerina bulloides, and deep-dwelling species, Globorotalia inflata, Globorotalia truncatulinoides (dextral and sinistral) and Pulleniatina obliquiloculata. Mg/Ca and Sr/Ca ratios in shells picked in 29 modern core tops from the North Atlantic Ocean are calibrated using calculated isotopic temperatures. Mg/Ca ratios on G. ruber and G. bulloides agree with published data and relationships. For deep-dwelling species, Mg/Ca calibration follows the equation Mg/Ca = 0.78 (±0.04) * exp (0.051 (±0.003) * T) with a significant correlation coefficient of R**2 = 0.74. Moreover, there is no significant difference between the different deep-dwellers analyzed. For the Sr/Ca ratio, the surface dwellers and P. obliquiloculata do not record any temperature dependence. For the Globorotalia species, the thermo dependence of Sr/Ca ratio can be described by a single linear relationship: Sr/Ca = (0.0182 (±0.001) * T) + 1.097 (±0.018), R**2 = 0.85. Temperature estimates with a 1 sigma error of ±2.0°C and ±1.3°C can be derived from the Mg/Ca and Sr/Ca ratios, respectively, as long as the Sr geochemistry in the ocean has been constant through time.
Resumo:
Recent evidence suggests that the Subtropical Convergence (STC) zone east of New Zealand shifted little from its modern position along Chatham Rise during the last glaciation, and that offshore surface waters north of the STC zone cooled only slightly. However, at nearshore core site P69 (2195 m depth), 115 km off the east coast of North Island and ca 300 km north of the modern STC zone, planktonic foraminiferal species, transfer function data and stable oxygen and carbon isotope records suggest that surface waters were colder by up to 6°C during the late last glacial period compared to the Holocene, and included a strong upwelling signature. Presently site P69 is bathed by south-flowing subtropical waters in the East Cape Current. The nearshore western end of Chatham Rise supports a major bathymetric depression, the Mernoo Saddle, through which some exchange between northern subtropical and southern subantarctic water presently occurs. It is proposed that as a result of much intensified current flows south of the Rise during the last glaciation, a consequence of more compressed subantarctic water masses, lowered sea level, and an expanded and stronger Westerly Wind system, there was accelerated leakage northwards of both Australasian Subantarctic Water and upwelled Antarctic Intermediate Water over Mernoo Saddle in a modified and intensified Southland Current. The expanded cold water masses displaced the south-flowing warm East Cape Current off southeastern North Island, and offshore divergence was accompanied by wind-assisted upwelling of nutrient-rich waters in the vicinity of P69. A comparable kind of inshore cold water jetting possibly characterised most glacial periods since the latest Miocene, and may account for the occasional occurrence of subantarctic marine fossils in onland late Cenozoic deposits north of the STC zone, rather than invoking wholesale major oscillations of the oceanic STC itself.
Resumo:
Isotope chronostratigraphy of Upper Quaternary sediments from the Northwest Pacific and the Bering Sea was established by oxygen isotope records in planktonic and benthic foraminifera. The main regularities of temporal variations of calcium carbonate, organic carbon and opal contents, as well as of magnetic susceptibility in sediments of the study region with regard to climatic variations and productivity were established by means of isotopic-geochemical and lithophysical analyses of bottom sediments. Correlation of volcanogenic interbeds in the sediments was carried out, and their stratigraphy and age were preliminarily ascertained. Correlation was accomplished of A.P. Jouse diatom horizons determined by an analysis of the main ecological variations in diatom assemblages in Upper Quaternary sediments of the Northwest Pacific, Bering and Okhotsk Seas, and their comparison with similar variations in sediment cores with standard oxygen isotope stages. Also variations in lithology and contents of biogenic components in sediments of the region and in the cores were taken into account. A ratio of abundance of "neritic" species to the sum of "neritic" and oceanic species abundance (coefficient Id) can be a criterion of ecological changes of diatom assemblages in the studied region. It is determined by climate variability and mostly by sea ice influence. Schemes of average sedimentation rates in the Northwest Pacific and Bering Sea for periods of the first and the second oxygen isotope stages (12.5-1 and 24-12.5 ka, respectively) were plotted on the basis of obtained results and correlation of diatom horizons and lithological units in early studied cores with the oxygen isotope stages. Closure of the Bering Strait and aeration of the north-eastern shelf of the Bering Sea during the second stage induced increase of sedimentation rates in the Bering Sea, as compared with the first stage, and suspended material transport from the Bering Sea through the Kamchatka Strait into the Northwest Pacific and its accumulation in the southeast direction.
Resumo:
An abrupt global warming of 3-4°C occurred near the end of the Maastrichtian at 65.45-65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical-subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical-subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased delta13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.