988 resultados para CYTOSOLIC CA2
Resumo:
Platelet free cytosolic calcium (PFCC) was measured in 21 healthy volunteers before and after cigarette smoking or physical exercise. The aim was to investigate whether acute blood pressure changes and increases in circulating levels of catecholamines and vasopressin modify PFCC. PFCC was determined using the Quin-2 method. Following cigarette smoking, significant increases in blood pressure, heart rate, plasma epinephrine (35 +/- 18 pg/ml before versus 51 +/- 31 pg/ml after smoking, P less than 0.05, mean +/- s.d.) and vasopressin levels (0.8 +/- 0.3 pg/ml before and 4.2 +/- 4.1 pg/ml after smoking, P less than 0.001) were observed. However, despite these acute hormonal and hemodynamic changes, PFCC remained stable at 156 +/- 55 nmol/l prior to the study and 157 +/- 29 nmol/l and 156 +/- 38 nmol/l at 20 and 80 min post-smoking, respectively. Acute physical exercise led to an increase in heart rate and systolic blood pressure but to a decrease in diastolic pressure. Moreover, a marked increase in plasma norepinephrine levels was observed after exercise (213 +/- 71 pg/ml before versus 747 +/- 501 pg/ml after exercise, P +/- 0.001). Again, PFCC was stable at 185 +/- 56 nmol/l at baseline versus 188 +/- 51 nmol/l at 20 min and 155 +/- 26 nmol/l at 80 min after exercise. These results therefore demonstrate that PFCC is not influenced acutely either by blood pressure increases, or by elevations in circulating catecholamine and vasopressin concentrations.
Resumo:
Although platelet cytosolic calcium has been shown to decrease during pharmacological treatment of hypertension, there is no evidence that cytosolic calcium also falls during a nonpharmacological reduction in blood pressure. To provide such evidence, we examined prospectively the relation between platelet cytosolic calcium and ambulatory blood pressure during weight reduction in moderately overweight (body mass index [BMI] greater than 25), mildly hypertensive individuals. The experimental group (responders: BMI reduction greater than 5%) consisted of 19 patients who lost 8.5 +/- 2.9 kg (mean +/- SD, p less than 0.05) during a 10-week hypocaloric diet, whereas the control group (nonresponders: BMI reduction less than 5%) consisted of 12 patients who showed no relevant change in body weight (-2.0 +/- 1.3 kg) during the same period of time. The moderate weight loss of the responders decreased blood pressure by 14/5 mm Hg (p less than 0.05), as measured by ambulatory monitoring, which renders a placebo effect unlikely. This nonpharmacological reduction in blood pressure was accompanied by a proportional 11% decrease (p less than 0.05) in platelet cytosolic calcium and also by significant (p less than 0.05) decreases in plasma catecholamines and serum cholesterol. These findings establish the concept of a nonpharmacological reduction in free cytosolic platelet calcium in humans and add further evidence suggesting a link between intracellular calcium homeostasis and blood pressure regulation.
Resumo:
Candida albicans RCH1 (regulator of Ca(2+) homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca(2+) and tolerance to azoles and Li(+), which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca(2+) pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca(2+) sensitivity, Ca(2+) uptake and cytosolic Ca(2+) level. The Ca(2+) hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca(2+)/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca(2+) homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.
Resumo:
Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.
Resumo:
T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.
Resumo:
Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target.
Resumo:
Modelos mecanÃsticos baseados em princÃpios de transporte de solutos pode ser de grande utilidade para prever os impactos do cultivo de florestas plantadas, por exemplo, com eucalipto sobre o capital e fluxo de nutrientes no solo. Dentre as variáveis de entrada demandadas por tais modelos, tem-se os valores das constantes Vmax, Km e Cmin da cinética de absorção iônica. Assim, os objetivos do presente trabalho foram determinar os valores de Vmax, Km e Cmin para K, Ca e Mg, bem como avaliar as respectivas eficiências nutricionais de clones de eucalipto. O estudo consistiu de três ensaios em solução nutritiva (um para cada cátion), sendo utilizadas mudas propagadas vegetativamente de um hÃbrido de E. grandis x E. urophylla (clone 1213) e de três hÃbridos de E. grandis (clones 7074, 57 e 129). Com base nos teores de cada um desses nutrientes nas soluções de depleção, em cada tempo de amostragem, no volume inicial e final de solução nos vasos e no peso de matéria fresca de raÃzes, foram obtidos os valores das constantes cinéticas. Para K, o clone 7074 apresentou o menor valor de Vmax em relação aos demais clones, os quais não diferiram entre si, e em relação ao Km e Cmin, os clones não diferiram estatisticamente. Para Ca, os clones estudados diferiram quanto ao valor de Vmax e Km, não diferindo, entretanto, para o Cmin. Os menores valores de Km para Mg foram verificados para os clones 57 e 7074, ou seja, as proteÃnas transportadoras de Mg na membrana plasmática das células radiculares apresentaram maior afinidade para esse nutriente. Contudo, os valores de Vmax e Cmin não diferiram entre os clones estudados. Diferenças na eficiência nutricional dos clones estudados quanto a K e a Ca foram devidas à s diferenças na eficiência de absorção, e para Mg à s diferenças na eficiência de absorção e de utilização.
Resumo:
The T-type Ca(2+) channels encoded by the Ca(V)3 genes are well established electrogenic drivers for burst discharge. Here, using Ca(V)3.3(-/-) mice we found that Ca(V)3.3 channels trigger synaptic plasticity in reticular thalamic neurons. Burst discharge via Ca(V)3.3 channels induced long-term potentiation at thalamoreticular inputs when coactivated with GluN2B-containing NMDA receptors, which are the dominant subtype at these synapses. Notably, oscillatory burst discharge of reticular neurons is typical for sleep-related rhythms, suggesting that sleep contributes to strengthening intrathalamic circuits.
Resumo:
Whether the response of the fetal heart to ischemia-reperfusion is associated with activation of the c-Jun N-terminal kinase (JNK) pathway is not known. In contrast, involvement of the sarcolemmal L-type Ca2+ channel (LCC) and the mitochondrial KATP (mitoKATP) channel has been established. This work aimed at investigating the profile of JNK activity during anoxia-reoxygenation and its modulation by LCC and mitoK(ATP) channel. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (60 min). Using the kinase assay method, the profile of JNK activity in the ventricle was determined every 10 min throughout anoxia-reoxygenation. Effects on JNK activity of the LCC blocker verapamil (10 nM), the mitoK(ATP) channel opener diazoxide (50 microM) and the blocker 5-hydroxydecanoate (5-HD, 500 microM), the mitochondrial Ca2+ uniporter (MCU) inhibitor Ru360 (10 microM), and the antioxidant N-(2-mercaptopropionyl) glycine (MPG, 1 mM) were determined. In untreated hearts, JNK activity was increased by 40% during anoxia and peaked fivefold relative to basal level after 30-40 min reoxygenation. This peak value was reduced by half by diazoxide and was tripled by 5-HD. Furthermore, the 5-HD-mediated stimulation of JNK activity during reoxygenation was abolished by diazoxide, verapamil or Ru360. MPG had no effect on JNK activity, whatever the conditions. None of the tested pharmacological agents altered JNK activity under basal normoxic conditions. Thus, in the embryonic heart, JNK activity exhibits a characteristic pattern during anoxia and reoxygenation and the respective open-state of LCC, MCU and mitoKATP channel can be a major determinant of JNK activity in a ROS-independent manner.
The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response.
Resumo:
The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.
Resumo:
Rapport de synthèse : Implication des canaux Ca2+ de type L et des canaux KATP dans la protection induite par pacing dans un modèle de coeur embryonnaire soumis à l'anoxieréoxygénation. Contexte et but : le canal Ca2+ de type L, les canaux K+ du sarcolemme (sarcKatp) et de la mitochondrie (mitoKatp) interviennent dans le préconditionnement ischémique ou pharmacologique du myocarde. La présente étude cherche à déterminer dans quelle mesure ces canaux peuvent aussi jouer un rôle dans la cardioprotection induite par pacing. Méthodes :des coeurs d'embryons de poulet âgés de 4 jours ont été soumis in ovo à un pacing durant 12 heures, en pratiquant une stimulation électrique ventriculaire asynchrone intermittente à 110% de la fréquence cardiaque intrinsèque. Les coeurs contrôles (sham) et les coeurs stimulés ont ensuite été soumis in vitro à une période d'anoxie de 30 minutes, suivie d'une réoxygénation de 60 minutes. Les coeurs ont été exposés à l'agoniste du canal Ca2+ de type L (Bay-K-8644, BAY-K) ou à son bloqueur (vérapamil, VERAP), à l'antagoniste non sélectif des canaux KATP (glibenclamide, GLIB), ainsi qu'à l'agoniste du canal mitoKATP (diazoxide, DIAZO), ou à son antagoniste (5-hydroxydécanoate, 5-HD). L'électrocardiogramme, le délai électro-mécanique (DEM) reflétant le couplage excitation-contraction, ainsi que la contractilité myocardique ont été systématiquement déterminés pendant l'anoxieréoxygénation. Résultats : en normoxie, la fréquence cardiaque, l'intervalle QT, la conduction atrioventriculaire, le DEM et le raccourcissement ventriculaires étaient identiques dans les coeurs sham et les coeurs stimulés. Par contre, au cours de la réoxygénation post-anoxique, les arythmies cessaient plus précocément et le DEM ventriculaire retrouvait plus rapidement son niveau initial dans les coeurs stimulés, comparés aux sham. Dans les coeurs sham, BAY-K (mais pas le VERAP), DIAZO (mais pas le 5HD) ou GLIB accéléraient la récupération du DEM ventriculaire, reproduisant ainsi la protection induite par le pacing. En revanche, aucun de ces agents n'affectait la récupération des cceurs stimulés. Conclusion : un pacing ventriculaire chronique et intermittent délivré à une fréquence quasi physiologique améliore la tolérance myocardique à une anoxie-réoxygénation ultérieure. L'approche pharmacologique amontré qu'une activation discrète du canal Ca2+ de type L, une inhibition du canal sarcKATP et/ou une ouverture du canal mitoKATP peuvent contribuer à la cardioprotection induite par le pacing.
Resumo:
O objetivo deste trabalho foi avaliar a probabilidade de resposta da produção de cana-de-açúcar à adubação potássica, em razão da relação K+ (Ca2++Mg2+ )-0,5 no solo. Foram compilados dados de 106 experimentos de adubação potássica na cana-de-açúcar. Em cada experimento foi registrado o ciclo de cultivo (cana-planta ou cana-soca), os teores de K, Ca e Mg do solo antes da adubação potássica, a relação K+ (Ca2++Mg2+ )-0,5, e se houve, ou não, resposta estatisticamente significativa da produção à adubação potássica. Foi utilizado o método estatÃstico de regressão logÃstica, efetuado pelo procedimento CATMOD do Statistical Analysis System. A caracterÃstica ciclo de cultivo foi eliminada do modelo, pois esta se apresentou como não-significativa no ajuste estatÃstico. A relação K+ (Ca2++Mg2+ )-0,5 do solo influenciou a probabilidade de resposta da produção de cana-de-açúcar à adubação potássica. À medida que a relação K+ (Ca2++Mg2+ )-0,5 aumentou, a probabilidade de resposta da produção de cana-de-açúcar à adubação potássica diminuiu. A relação K+ (Ca2++Mg2+ )-0,5 no solo foi classificada em baixa (<0,2547), média (0,2547 a 0,3349) e alta (>0,3349). A relação K+ (Ca2++Mg2+ )-0,5 no solo deve ser usada como mais um critério para orientar a adubação potássica na cultura da cana-de-açúcar.
Resumo:
The intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown. Here we found that LL37 very efficiently transports self-DNA into monocytes, leading the production of type I IFNs in a Toll-like receptor-independent manner. This type I IFN induction was mediated by double-stranded B form DNA, regardless of its sequence, CpG content, or methylation status, and required signaling through the adaptor protein STING and TBK1 kinase, indicating the involvement of cytosolic DNA sensors. Thus, our study identifies a novel link between the antimicrobial peptides and type I IFN responses involving DNA-dependent activation of cytosolic sensors in monocytes.
Resumo:
RESUME LARGE PUBLIC Le système nerveux central est principalement composé de deux types de cellules :les neurones et les cellules gliales. Ces dernières, bien que l'emportant en nombre sur les neurones, ont longtemps été considérées comme des cellules sans intérêts par les neuroscientifiques. Hors, les connaissances modernes à leurs sujets indiquent qu'elles participent à la plupart des tâches physiologiques du cerveau. Plus particulièrement, elles prennent part aux processus énergétiques cérébraux. Ceux-ci, en plus d'être vitaux, sont particulièrement intrigants puisque le cerveau représente seulement 2 % de la masse corporelle mais consomme environ 25 % du glucose (substrat énergétique) corporel. Les astrocytes, un type de cellules gliales, jouent un rôle primordial dans cette formidable utilisation de glucose par le cerveau. En effet, l'activité neuronale (transmission de l'influx nerveux) est accompagnée d'une augmentation de la capture de glucose, issu de la circulation sanguine, par les astrocytes. Ce phénomène est appelé le «couplage neurométabolique » entre neurones et astrocytes. L'ion sodium fait partie des mécanismes cellulaires entrant en fonction lors de ces processus. Ainsi, dans le cadre de cette thèse, les aspects dynamiques de la régulation du sodium astrocytaire et leurs implications dans le couplage neurométabolique ont été étudiés par des techniques d'imagerie cellulaires. Ces études ont démontré que les mitochondries, machineries cellulaires convertissant l'énergie contenue dans le glucose, participent à la régulation du sodium astrocytaire. De plus, ce travail de thèse a permis de découvrir que les astrocytes sont capables de se transmettre, sous forme de vagues de sodium se propageant de cellules en cellules, un message donnant l'ordre d'accroître leur consommation d'énergie. Cette voie de signalisation leur permettrait de fournir de l'énergie aux neurones suite à leur activation. RESUME Le glutamate libéré dans la fente synaptique pendant l'activité neuronale, est éliminé par les astrocytes environnants. Le glutamate est co-transporté avec des ions sodiques, induisant une augmentation intracellulaire de sodium (Na+i) dans les astrocytes. Cette élévation de Na+i déclenche une cascade de mécanismes moléculaires qui aboutissent à la production de substrats énergétiques pouvant être utilisés par les neurones. Durant cette thèse, la mesure simultanée du sodium mitochondrial (Na+mit) et cytosolique par des techniques d'imagerie utilisant des sondes fluorescentes spécifiques, a indiqué que les variations de Na+i induites par le transport du glutamate sont transmises aux mitochondries. De plus, les voies d'entrée et de sortie du sodium mitochondrial ont été identifiées. L'échangeur de Na+ et de Ca2+ mitochondrial semble jouer un rôle primordial dans l'influx de Na+mit, alors que l'efflux de Na+mit est pris en charge par l'échangeur de Na+ et de H+ mitochondrial. L'étude du Na+mit a nécessité l'utilisation d'un système de photoactivation. Les sources de lumière ultraviolette (UV) classiques utilisées à cet effet (lasers, lampes à flash) ayant plusieurs désavantages, une alternative efficace et peu coûteuse a été développée. Il s'agit d'un système compact utilisant une diode électroluminescente (LED) à haute puissance et de longueur d'onde de 365nm. En plus de leurs rôles dans le couplage neurométabolique, les astrocytes participent à la signalisation multicellulaire en transmettant des vagues intercellulaires de calcium. Ce travail de thèse démontre également que des vagues intercellulaires de sodium peuvent être évoquées en parallèle à ces vagues calciques. Le glutamate, suite à sa libération par un mécanisme dépendent du calcium, est réabsorbé par les transporteurs au glutamate. Ce mécanisme a pour conséquence la génération de vagues sodiques se propageant de cellules en cellules. De plus, ces vagues sodiques sont corrélées spatialement avec une consommation accrue de glucose par les astrocytes. En conclusion, ce travail de thèse a permis de montrer que le signal sodique astrocytaire, déclenché en réponse au glutamate, se propage à la fois de façon intracellulaire aux mitochondries et de façon intercellulaire. Ces résultats suggèrent que les astrocytes fonctionnent comme un réseau de cellules nécessaire au couplage énergétique concerté entre neurones et astrocytes et que le sodium est un élément clé dans les mécanismes de signalisations cellulaires sous-jacents. SUMMARY Glutamate, released in the synaptic cleft during neuronal activity, is removed by surrounding astrocytes. Glutamate is taken-up with Na+ ions by specific transporters, inducing an intracellular Na+ (Na+i) elevation in astrocytes which triggers a cascade of molecular mechanisms that provides metabolic substrates to neurons. Thus, astrocytic Na+i homeostasis represents a key component of the so-called neurometabolic coupling. In this context, the first part of this thesis work was aimed at investigating whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Simultaneous monitoring of both mitochondrial Na+ (Na+mit) and cytosolic Na+ changes with fluorescent dyes revealed that glutamate-evoked cytosolic Na+ elevations are indeed transmitted to mitochondria. The mitochondrial Na+/Ca2+ exchangers have a prominent role in the regulation of Na+mit influx pathway, and Na+mit extrusion appears to be mediated by Na+/H+ exchangers. To demonstrate the implication of Na+/Ca2+ exchangers, this study has required the technical development of an UV-flash photolysis system. Because light sources for flash photolysis have to be powerful and in the near UV range, the use of UV lasers or flash lamps is usually required. As an alternative to these UV sources that have several drawbaks, we developped a compact, efficient and lowcost flash photolysis system which employs a high power 365nm light emitting diode. In addition to their role in neurometabolic coupling, astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. The third part of this thesis show that intercellular Na+ waves can be evoked in parallel to Ca2+ waves. Glutamate released by a Ca2+ wave-dependent mechanism is taken up by glutamate transporters, resulting in a regenerative propagation of cytosolic Na+ increases. Na+ waves in turn lead to a spatially correlated increase in glucose uptake. In conclusion, the present thesis demonstrates that glutamate-induced Na+ changes occurring in the cytosol of astrocytes propagate to both the mitochondrial matrix and the astrocytic network. These results furthermore support the view that astrocytic Na+ is a signal coupled to the brain energy metabolism.
Resumo:
Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.