951 resultados para CYCLOPENTADIENYL LIGAND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) with telomeric and genomic G-quadruplex DNA has been extensively studied. However, a comparative study of interactions of TMPyP4 with different conformations of human telomeric G-quadruplex DNA, namely, parallel propeller-type (PP), antiparallel basket-type (AB), and mixed hybrid-type (MH) G-quadruplex DNA, has not been done. We considered all the possible binding sites in each of the G-quadruplex DNA structures and docked TMPyP4 to each one of them. The resultant most potent sites for binding were analyzed from the mean binding free energy of the complexes. Molecular dynamics simulations were then carried out, and analysis of the binding free energy of the TMPyP4-G-quadruplex complex showed that the binding of TMPyP4 with parallel propeller-type G-quadruplex DNA is preferred over the other two G-quadruplex DNA conformations. The results obtained from the change in solvent excluded surface area (SESA) and solvent accessible surface area (SASA) also support the more pronounced binding of the ligand with the parallel propeller-type G-quadruplex DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jacalin is among the most thoroughly studied lectins. Its carbohydrate-binding site has also been well characterized. It has been postulated that the lower affinity of beta-galactosides for jacalin compared with beta-galactosides is caused by steric interactions of the substituents in the former with the protein. This issue has been explored energetically and structurally using different appropriate carbohydrate complexes of jacalin. It turns out that the earlier postulation is not correct. The interactions of the substituent with the binding site remain essentially the same irrespective of the anomeric nature of the substitution. This is achieved through a distortion of the sugar ring in beta-galactosides. The difference in energy, and therefore in affinity, is caused by a distortion of the sugar ring in beta-galactosides. The elucidation of this unprecedented distortion of the ligand as a strategy for modulating affinity is of general interest. The crystal structures also provide a rationale for the relative affinities of the different carbohydrate ligands for jacalin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six new mixed-ligand cobalt(III) complexes of formulation Co(N-N)(2)(O-O)](ClO4)(2) (1-6), where N-N is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido3,2-d:2',3'-f] quinoxaline (dpq in 3, 4), and dipyrido3,2-a:2',3'-c]phenazine (dppz in 5, 6), O-O is acetylacetonate (acac in 1, 3, 5) or curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione, cur in 2, 4, 6), have been synthesized and characterized. The X-ray crystal structures of complex 1 (as PF6- salt, 1a) and 3 show distorted octahedral geometries formed by the CoN4O2 core. The complexes 1, 3 and 5 having the simple acac ligand are prepared as control species to understand the role of curcumin. The optimized geometries and the frontier orbitals of the curcumin complexes 2, 4, and 6 are obtained from the DFT calculations. The complexes 2, 4, and 6 having the photoactive curcumin moiety display an absorption band in the visible region near 420 nm and show remarkable photocytotoxicity in HeLa cancer cells with respective IC50 values of 7.4 mu M, 5.1 mu M and 1.6 mu M while being much less toxic in dark. MTT assay using complex 6 shows that it is not significantly photocytotoxic to MCF-10A normal cells. The control complexes having the acac ligand are non-toxic both in the presence and absence of light. The cell death is apoptotic in nature and triggered by the photogeneration of reactive oxygen species. Fluorescence imaging experiments on HeLa cells reveals that complex 6 accumulated primarily inside the mitochondria. Human serum albumin (HSA) binding experiments show that the complexes bind HSA with good affinity, but 6 binds with the highest affinity, with a K-b value of 9.8 x 10(5) M-1. Thus, complex 6 with its negligible toxicity in the dark and in normal cells but remarkable toxicity in visible light holds significant photochemotherapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron(III)-Schiff base complexes, namely, Fe(tsc-py)(2)](NO3) (1), Fe(tsc-acpy)(2)](NO3) (2) and Fe(tsc-VB6)(2)](NO3) (3), where tsc-py, tsc-acpy and tsc-VB6 are the respective Schiff bases derived from thiosemicarbazide (tsc) and pyridine-2-aldehyde (tsc-py), 2-acetyl pyridine (tsc-acpy) and vitamin B-6 (pyridoxal, tsc-VB6), have been prepared, structurally characterized and their photocytotoxicity studied in cancer HeLa cells. The single crystal X-ray structures of the complexes 1 and 2 show a distorted octahedral geometry formed by the FeN4S2 core. The low-spin and 1 : 1 electrolytic complexes display a broad absorption band in the visible region. Complexes 1 and 2, without any VB6 moiety are not cytotoxic under light or dark conditions. Complex 3 is significantly photocytotoxic under visible light of 400-700 nm giving an IC50 value of 22.5 mu M in HeLa cells with no dark toxicity (IC50 > 100 mu M). The photo-induced cell death is attributable to apoptotic pathways involving photo-assisted generation of intracellular ROS. The observed photocytotoxicity of complex 3 could be the result of its better photosensitizing property combined with its enhanced uptake into cancer cells via a VB6 transporting membrane carrier (VTC) mediated diffusion pathway due to the presence of the VB6 moiety compared to the two non-vitamin B-6 analogues, complexes 1 and 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first hyperpolarizability (beta) of a series of half-sandwich Ru complexes with a mercaptobenzothiazole ligand bearing a halogen atom substitution in the para-position has been investigated by hyper-Rayleigh scattering and quantum chemical calculations. The heterocyclic ligand with a bromine atom in the para position makes it a very good donor and charge flows to the Ru center enhancing the beta value of the complex by a factor of 2 compared to the complex with the ligand without the halogen substitution. The resonance (+R) and the inductive (-I) effects exerted by the halogen atom in the para position push electrons in opposing directions in the complex. For the Br and Cl atoms the resonance effect dominates which enables the ligand to donate electrons to the metal center thereby increasing the hyperpolarizability whereas for the fluorine atom, the inductive effect is dominant which reduces the charge flow to the metal and the hyperpolarizability drops even below that of the unsubstituted ligand. This unprecedented halogen atom effect on beta of metal complexes is reported. (C) 2015 Elsevier By. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of mononuclear five-coordinate cobalt(II) complexes, Co(dbdmp)(X)]Y, where dbdmp=N,N-diethyl-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1, 2-diamine, X=N-3(-)/NCO-/NCS- and Y=PF6-/BF4-/ClO4-, have been synthesized and characterized by microanalyses and spectroscopic techniques. Crystal structures of Co(N-3)(dbdmp)]PF6 (1), Co(N-3)(dbdmp)]ClO4 (3), Co(NCO)(dbdmp)]PF6 (4), Co(NCO)(dbdmp)]ClO4 (6), and Co(NCS)(dbdmp)]ClO4 (9) have been solved by single-crystal X-ray diffraction studies and showed that all the complexes have distorted trigonal bipyramidal geometry; PF6- counter anion containing complexes Co(N-3)(dbdmp)]PF6 and Co(NCO)(dbdmp)]PF6 have chiral space groups. The binding ability of synthesized complexes with CT-DNA and bovine serum albumin (BSA) has been studied by spectroscopic methods and viscosity measurements. The experimental results of absorption titration of cobalt(II) complexes with CT-DNA indicate that the complexes have ability to form adducts and they can stabilize the DNA helix. The cobalt(II) complexes exhibit good binding propensity to BSA protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by observations of non-exponential decay times in the stochastic binding and release of ligand-receptor systems, exemplified by the work of Rogers et al on optically trapped DNA-coated colloids (Rogers et al 2013 Soft Matter 9 6412), we explore the general problem of polymer-mediated surface adhesion using a simplified model of the phenomenon in which a single polymer molecule, fixed at one end, binds through a ligand at its opposite end to a flat surface a fixed distance L away and uniformly covered with receptor sites. Working within the Wilemski-Fixman approximation to diffusion-controlled reactions, we show that for a flexible Gaussian chain, the predicted distribution of times f(t) for which the ligand and receptor are bound is given, for times much shorter than the longest relaxation time of the polymer, by a power law of the form t(-1/4). We also show when the effects of chain stiffness are incorporated into this model (approximately), the structure of f(t) is altered to t(-1/2). These results broadly mirror the experimental trends in the work cited above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sn4+-doped In2O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8nm, 10% Sn4+) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3)(3)OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around =1950nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (approximate to 35mcm(-1)). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E-2 (PGE(2)) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen.