938 resultados para CRACK PROPAGATION
Resumo:
In the present work, a discrete numerical approach is adopted to understand size effect and fracture behavior in concrete. First, a comparison is performed between 2D and 3D geometrically similar structures to analyze thickness effect. The study is supplemented with element failure pattern to analyze crack propagation. Further, changing influence of notch to depth ratio is analyzed by comparing 3D geometrically similar structures with different values of notch depth ratio. Finally, a statistical analysis is performed to understand the influence of structure size and heterogeneity on regression parameters namely Bf(t)' and D-0. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work, an attempt has been made to assess the fatigue life of reinforced concrete beams, by proposing a crack propagation law which accounts for parameters such as fracture toughness, crack length, loading ratio and structural size. A numerical procedure is developed to compute fatigue life of RC beams. The predicted results are compared with the available experimental data in the literature and seen to agree reasonably well. Further, in order to assess the remaining life of an RC member, the moment carrying capacity is determined as a function of crack extension, based on the crack tip opening displacement and residual strength of the member is computed at an event of unstable fracture.
Resumo:
Several experimental studies have shown that fracture surfaces in brittle metallic glasses (MGs) generally exhibit nanoscale corrugations which may be attributed to the nucleation and coalescence of nanovoids during crack propagation. Recent atomistic simulations suggest that this phenomenon is due to large spatial fluctuations in material properties in a brittle MG, which leads to void nucleation in regions of low atomic density and then catastrophic fracture through void coalescence. To explain this behavior, we propose a model of a heterogeneous solid containing a distribution of weak zones to represent a brittle MG. Plane strain continuum finite element analysis of cavitation in such an elastic-plastic solid is performed with the weak zones idealized as periodically distributed regions having lower yield strength than the background material. It is found that the presence of weak zones can significantly reduce the critical hydrostatic stress for the onset of cavitation which is controlled uniquely by the local yield properties of these zones. Also, the presence of weak zones diminishes the sensitivity of the cavitation stress to the volume fraction of a preexisting void. These results provide plausible explanations for the observations reported in recent atomistic simulations of brittle MGs. An analytical solution for a composite, incompressible elastic-plastic solid with a weak inner core is used to investigate the effect of volume fraction and yield strength of the core on the nature of cavitation bifurcation. It is shown that snap-cavitation may occur, giving rise to sudden formation of voids with finite size, which does not happen in a homogeneous plastic solid. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The fatigue behavior of conventional friction stir spot welding (FSSW) and friction stir spot welding refilled by the friction forming process (FSSW-FFP) in aluminum 6061-T6 lap shear specimens, are investigated based on the experimental observations. Optical micrographs of the welds after fatigue failure in both the cases are examined to study the fatigue crack propagation and failure modes. Experimental results indicate that the fatigue strength of the FSSW-FFP weld samples is higher than that of the conventional FSSW samples at all loads. Fracture surfaces are analyzed in detail using the scanning electron microscope. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.
Resumo:
When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.
Resumo:
The paper presents a multiscale method for crack propagation. The coarse region is modelled by the differential reproducing kernel particle method. Fracture in the coarse scale region is modelled with the Phantom node method. A molecular statics approach is employed in the fine scale where crack propagation is modelled naturally by breaking of bonds. The triangular lattice corresponds to the lattice structure of the (111) plane of an FCC crystal in the fine scale region. The Lennard-Jones potential is used to model the atom-atom interactions. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively refined and coarsened as the crack propagates. The centro symmetry parameter is used to detect the crack tip location. The method is implemented in two dimensions. The results are compared to pure atomistic simulations and show excellent agreement. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).
Resumo:
The influence of Pt layer thickness on the fracture behavior of PtNiAl bond coats was studied in situ using clamped micro-beam bend tests inside a scanning electron microscope (SEM). Clamped beam bending is a fairly well established micro-scale fracture test geometry that has been previously used in determination of fracture toughness of Si and PtNiAl bond coats. The increasing amount of Pt in the bond coat matrix was accompanied by several other microstructural changes such as an increase in the volume fraction of alpha-Cr precipitate particles in the coating as well as a marginal decrease in the grain size of the matrix. In addition, Pt alters the defect chemistry of the B2-NiAl structure, directly affecting its elastic properties. A strong correlation was found between the fracture toughness and the initial Pt layer thickness associated with the bond coat. As the Pt layer thickness was increased from 0 to 5 mu m, resulting in increasing Pt concentration from 0 to 14.2 at.% in the B2-NiAl matrix and changing alpha-Cr precipitate fraction, the initiation fracture toughness (K-IC) was seen to rise from 6.4 to 8.5 MPa.m(1/2). R-curve behavior was observed in these coatings, with K-IC doubling for a crack propagation length of 2.5 mu m. The reasons for the toughening are analyzed to be a combination of material's microstructure (crack kinking and bridging due to the precipitates) as well as size effects, as the crack approaches closer to the free surface in a micro-scale sample.
Resumo:
The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.
Resumo:
The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].
Resumo:
Micro- and macroscopic characterizations of the viscoelastic fracture of a unidirectional carbon-fibre-reinforced epoxy composite are presented. First, the micro-cracking behavior of the material is studied by the use of scanning electron microscopy; the in situ creep cracking process is observed and the crack propagation is measured. In order to obtain insight into the mechanisms of the observed creep cracking, macroscopic investigations were also carried out. Finite-element method simulations were carried out to calculate the stress distribution and the variation of stresses with time. A theoretical analysis of the orthotropy of viscoelastic fracture behavior of the material is also conducted.
Resumo:
The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.
Resumo:
With a newly developed Material Failure Process Analysis code (MFPA(2D)), influence of hetero geneity on fracture processes and strength characterization of brittle disorder materials such as rock or concrete is numerically studied under uniaxial compression and tension conditions. It is found th at, due to the heterogeneity of the disordered material, relatively more diffused micro-fractures appear in the early stage of loading. Different from homogeneous materials such as glass, macro-crack nucleation starts well before the peak stress is reached and the crack propagation and coalescence can be traced, which can be taken as a precursory to predict the macro-fracture of the material. The presence of residual strength in the post-peak region and the resemblance in the stress-strain curves between tension and compression are significant results and are found to be dependent on the heterogeneity of the specimens. Examples showing the tentative applications of MFPA(2D) in modeling failure of composite materials and rock or civil engineering problem are also given in this paper.
Resumo:
Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.