991 resultados para CORRELATION NETWORKS
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
In this work an iterative strategy is developed to tackle the problem of coupling dimensionally-heterogeneous models in the context of fluid mechanics. The procedure proposed here makes use of a reinterpretation of the original problem as a nonlinear interface problem for which classical nonlinear solvers can be applied. Strong coupling of the partitions is achieved while dealing with different codes for each partition, each code in black-box mode. The main application for which this procedure is envisaged arises when modeling hydraulic networks in which complex and simple subsystems are treated using detailed and simplified models, correspondingly. The potentialities and the performance of the strategy are assessed through several examples involving transient flows and complex network configurations.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
The effects of fluctuating initial conditions are studied in the context of relativistic heavy ion collisions where a rapidly evolving system is formed. Two-particle correlation analysis is applied to events generated with the NEXSPHERIO hydrodynamic code, starting with fluctuating nonsmooth initial conditions (IC). The results show that the nonsmoothness in the IC survives the hydroevolution and can be seen as topological features of the angular correlation function of the particles emerging from the evolving system. A long range correlation is observed in the longitudinal direction and in the azimuthal direction a double peak structure is observed in the opposite direction to the trigger particle. This analysis provides clear evidence that these are signatures of the combined effect of tubular structures present in the IC and the proceeding collective dynamics of the hot and dense medium.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component.
Resumo:
We present a scheme for quasiperfect transfer of polariton states from a sender to a spatially separated receiver, both composed of high-quality cavities filled by atomic samples. The sender and the receiver are connected by a nonideal transmission channel -the data bus- modelled by a network of lossy empty cavities. In particular, we analyze the influence of a large class of data-bus topologies on the fidelity and transfer time of the polariton state. Moreover, we also assume dispersive couplings between the polariton fields and the data-bus normal modes in order to achieve a tunneling-like state transfer. Such a tunneling-transfer mechanism, by which the excitation energy of the polariton effectively does not populate the data-bus cavities, is capable of attenuating appreciably the dissipative effects of the data-bus cavities. After deriving a Hamiltonian for the effective coupling between the sender and the receiver, we show that the decay rate of the fidelity is proportional to a cooperativity parameter that weighs the cost of the dissipation rate against the benefit of the effective coupling strength. The increase of the fidelity of the transfer process can be achieved at the expense of longer transfer times. We also show that the dependence of both the fidelity and the transfer time on the network topology is analyzed in detail for distinct regimes of parameters. It follows that the data-bus topology can be explored to control the time of the state-transfer process.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.
Resumo:
Bounds on the exchange-correlation energy of many-electron systems are derived and tested. By using universal scaling properties of the electron-electron interaction, we obtain the exponent of the bounds in three, two, one, and quasione dimensions. From the properties of the electron gas in the dilute regime, the tightest estimate to date is given for the numerical prefactor of the bound, which is crucial in practical applications. Numerical tests on various low-dimensional systems are in line with the bounds obtained and give evidence of an interesting dimensional crossover between two and one dimensions.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.