420 resultados para COMPOST


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas últimas décadas, a disposição final de lixo tornou-se um sério problema a ser enfrentado por todos os países, em função da escassez crescente de terrenos disponíveis para aterros sanitários e distância cada vez maior dos centros geradores e a disposição final, assim como do aumento substancial da geração per capita. A acumulação de lixo nos grandes centros populacionais estimula a proliferação de macro e microvetores (ratos, baratas, moscas, vírus, bactérias, parasitos) e conseqüentemente, a disseminação de doenças. Em particular, com relação ao lixo gerado em ilhas e comunidades isoladas, é de alta relevância estratégias baseadas na descentralização do tratamento da fração orgânica de lixo domiciliar, com fim do transporte através de barcas para o continente, gerando mau cheiro e riscos de poluição ambiental. O presente projeto teve por objetivo: Testar o mesmo reator de compostagem descentralizada sob condições do verão sueco, alimentando-o com resíduos de restaurantes da cidade costeira Kalmar e sob condições brasileiras, alimentando-o com resíduos de cozinha da escola municipal de Abraão-Ilha Grande, RJ; propor modificações mecânicas e/ou operacionais para otimização dos processos; avaliar a qualidade e o grau de maturação do composto de diferentes fases através do método respirométrico Specific Oxygen Uptake Rate (SOUR)o método respirométrico NBR 14283 da ABNT. Em resumo, concluiu-se que a composição do lixo e pH inicial do material estruturante adicionado são fatores determinantes do tempo requerido para degradação dos ácidos orgânicos gerados e subseqüente elevação do pH; dependendo das características dos resíduos orgânicos, é necessária a inclusão de inoculante (ex: composto) para melhor desenvolvimento de bactérias e fungos e, conseqüentemente, otimização do processo; as análises físico-químicas e microbiológicas confirmaram que o processo de degradação aeróbia ocorre no interior do corpo principal do reator e que a qualidade do composto gerado é satisfatória; entretanto, melhorias consideráveis no sistema de trituração e alimentação são requeridas para que o reator testado possa se usado em sua capacidade plena. Os testes respirométrico atráves do Specific Oxygen Uptake Rate(SOUR) e da norma NBR 14283 da ABNT mostraram-se ambos eficazes na identificação do grau de maturação do composto e do avanço do processo de compostagem. Uma vez removidos os problemas mecânicos de trituração e alimentação, o reator testado poderá ser utilizado como uma tecnologia inovadora do tratamento de lixo orgânico in situ para pequenos e médios geradores de lixo orgânico domiciliar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Details are given of activities conducted in Zomba, Malawi, in order to demonstrate new aquaculture technologies and encourage their use by smallholder fish farmers. The following technologies were introduced: napier grass as a pond output; use of a reed fence for harvesting fish; developing a high-quality compost as a pond input; vegetable-pond integration; chicken-pond integration; smoking kiln; pond stirring; and rice-fish integration. The reactions of the farmers to these technologies and their testing by the farmers are outlined briefly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho foi estudado o tratamento simultâneo por biofiltração de emissões de compostos orgânicos voláteis, COV e gás sulfídrico, H2S, em estações de tratamento de despejos industriais, de refinaria de petróleo, ETDI. A biofiltração dos gases emanados da EDTI mostrou ser uma técnica de alta eficiência, atingindo valores de 95 a 99 % para tratamento simultâneo de COV e H2S em concentrações de 1000 e 100 ppmv, respectivamente. Foram realizados testes em 95 dias consecutivos de operação, em uma planta piloto instalada na Superintendência da Industrialização do Xisto, SIX, em São Mateus do Sul, Paraná, de março a agosto de 2006. O biofiltro foi do tipo fluxo ascendente, com 3,77 m3 de leito orgânico, composto de turfa, carvão ativado, lascas de madeira, serragem brita fina além de outros componentes menores. Foi realizada inoculação biológica com lodo filtrado de estação de tratamento de esgoto sanitário. As vazões de gás aplicadas variaram de 85 a 407 m3/h, resultando em taxas de carga de massa de 11,86 a 193,03 g de COV/h.m3 de leito e tempos de residência de 24 segundos a 6,5 minutos, com tempo ótimo de 1,6 minutos. A capacidade máxima de remoção do sistema encontrada, nas condições testadas, foi de 15 g de COV/h. m3, compatível com os valores encontrados na literatura para depuração biológica de COV na escala praticada. Também foi verificada a redução de componentes específicos de BTX, demonstrando boa degradabilidade dos compostos orgânicos. Finalmente o biofiltro demonstrou boa robustez biológica diante dos desvios operacionais intencionalmente provocados, tais como falta de umidade do leito, baixa temperatura, alta vazão, falta de carga de COV e baixo pH do leito. Depois de retomada a condição de operação estável, a biofiltração rapidamente atingiu o estado de equilíbrio, assegurando o uso eficiente e confiável da técnica no tratamento de gases de EDTI na indústria do hidrocarbonetos ou em refinarias de petróleo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the global stringent legislations regulating the wastes generated from the drilling process of oil exploration and production activities, the management of hazardous drill cuttings has become one of the pressing needs confronting the petroleum industry. Most of the prevalent treatment techniques adopted by oil companies are extremely expensive and/or the treated product has to be landfilled without any potential end-use; thereby rendering these solutions unsustainable. The technique of stabilisation/solidification is being investigated in this research to treat drill cuttings prior to landfilling or for potential re-use in construction products. Two case studies were explored namely North Sea and Red Sea. Given the known difficulties with stabilising/solidifying oils and chlorides, this research made use of model drill cutting mixes based on typical drill cutting from the two case studies, which contained 4.2% and 10.95% average concentrations of hydrocarbons; and 2.03% and 2.13% of chlorides, by weight respectively. A number of different binders, including a range of conventional viz. Portland cement (PC) as well as less-conventional viz. zeolite, or waste binders viz. cement kiln dust (CKD), fly ash and compost were tested to assess their ability to treat the North Sea and Red Sea model drill cuttings. The dry binder content by weight was 10%, 20% and 30%. In addition, raw drill cuttings from one of the North Sea offshore rigs were stabilised/solidified using 30% PC. The characteristics of the final stabilised/solidified product were finally compared to those of thermally treated cuttings. The effectiveness of the treatment using the different binder systems was compared in the light of the aforementioned two contaminants only. A set of physical tests (unconfined compressive strength (UCS)), chemical tests (NRA leachability) and micro-structural examinations (using scanning electron microscopy (SEM), and X-ray diffraction (XRD)) were used to evaluate the relative performance of the different binder mixes in treating the drill cuttings. The results showed that the observed UCS covered a wide range of values indicating various feasible end-use scenarios for the treated cuttings within the construction industry. The teachability results showed the reduction of the model drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the 30% and 20% binders for chloride concentrations, and (b) by the 20% and 30% of compost-PC and CKD-PC binders for the Red Sea cuttings. The 20% and 30% compost-PC and CKD-PC binders successfully reduced the leached oil concentration of the North Sea cuttings to inert levels. Copyright 2007, Society of Petroleum Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a laboratory study on the consequences of the application of combined soil stabilization and bioaugmentation in the remediation of a model contaminated soil. Stabilization and bioaugmentation are two techniques commonly applied independently for the remediation of heavy metal and organic contamination respectively. However, for a cocktail of contaminants combined treatments are currently being considered. The model soil was contaminated with a cocktail of organics and heavy metals based on the soil and contaminant conditions in a real contaminated site. The soil stabilization treatment was applied using either zeolite or green waste compost as additives and a commercially available hydrocarbon degrading microbial consortium was used for the bioaugmentation treatment. The effects of stabilization with or without bioaugmentation on the leachability of cadmium and copper was observed using an EU batch leaching test procedure and a flow-through column leaching test, both using deionized water at a pH of 5.6. In addition, the population of hydrocarbon degrading microorganisms was monitored using a modified plate count procedure in cases where bioaugmentation was applied. It was found that while the stabilization treatment reduced the metal leachability by up to 60%, the bioaugmentation treatment increased it by up to 100% Microbial survival was also higher in the stabilized soil samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilisation, using a wide range of binders including wastes, is most effective for heavy metal soil contamination. Bioremediation techniques, including bioaugmentation to enhance soil microbial population, are most effective for organic contaminants in the soil. For mixed contaminant scenarios a combination of these two techniques is currently being investigated. An essential issue in this combined remediation system is the effect of microbial processes on the leachability of the heavy metals. This paper considers the use of zeolite and compost as binder additives combined with bioaugmentation treatments and their effect on copper leachability in a model contaminated soil. Different leaching test conditions are considered including both NRA and TCLP batch leaching tests as well as flow-through column tests. Two flow rates are applied in the flow-through tests and the two leaching tests are compared. Recommendations are given as to the effectiveness of this combined remediation technique in the immobilisation of copper. © 2005 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Half of the world’s urban population will live in informal settlements or “slums” by 2030. Affordable urban sanitation presents a unique set of challenges as the lack of space and resources to construct new latrines makes the de-sludging of existing pits necessary and is something that is currently done manually with significant associated health risks. Therefore various mechanised technologies have been developed to facilitate pit emptying, with the majority using a vacuum system to remove material from the top of the pit. However, this results in the gradual accumulation of unpumpable sludge in the pit, which eventually fills the latrine and forces it to be abandoned. This study has developed a method for fluidising unpumpable pit latrine sludge, based on laboratory experiments using a harmless synthetic sludge. Such a sludge consisting of clay and compost was developed to replicate the physical characteristics of pit latrine sludges characterised in Botswana during the 1980s. Undrained shear strength and density are identified as the critical parameters in controlling pumpability and a method of sludge characterisation based on these parameters is reported. In a series of fluidisation tests using a one fifth scale pit emptying device the reduction in sludge shear strength was found to be caused by i) dilution, which increases water content, and ii) remoulding, which involves mechanical agitation to break down the structure of the material. The tests demonstrated that even the strongest of sludges could be rendered “pumpable” by sufficient dilution. Additionally, air injection alone produced a three-fold decrease in strength of consolidated samples as a result of remoulding at constant water content. The implications for sludge treatment and disposal are discussed, and the classification of sludges according to the equipment required to remove them from the latrine is proposed. Possible field tests to estimate sludge density and shear strength are suggested. The feasibility of using low cost vacuum cleaners to replace expensive vane pumps is demonstrated. This offers great potential for the development of affordable pit emptying technologies that can remove significantly stronger sludges than current devices through fluidising the wastes at the bottom of the pit before emptying

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing animal excrement plays an important role in nutrient cycling and redistribution in grazing ecosystems, due to grazing in large areas and return in small areas. To elucidate the changes to the soil and pasture caused by sheep urine, fresh dung, and compost patches, a short- term field experiment using artificially placed pats was set up in the autumn of 2003 in the Inner Mongolian steppe. Urine application significantly increased soil pH during the first 32 days in soil layers at depths of both 0 - 5 cm and 5 - 15 cm. Rapid hydrolysis of urea gave large amounts of urine- nitrogen ( N) as ammonium ( NH4+) in soil extracts and was followed by apparent nitrification from day 2. Higher inorganic N content in the urine- treated soil was found throughout the experiment compared with the control. No significant effects of sheep excrement on soil microbial carbon ( C) and soil microbial N was found, but microbial activities significantly increased compared with the control after application of sheep excrement. Forty- six percent of dung- N and 27% of compost- N were transferred into vegetation after the experiment. The results from this study suggest that large amounts of nutrients have been lost from the returned excrement patches in the degraded grassland of Inner Mongolia, especially from sheep urine- N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excrement patches of grazing animals play an important role in greenhouse gas (GHG) fluxes due to the high nitrogen (N) and available carbon (C) deposited in small areas, but little information is available for the effect of excrement in the Inner Mongolian grassland (43 26 degrees N, 116 degrees 40'E). To elucidate the effect of grazing sheep urine, fresh dung and compost on fluxes of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O), a short-term field study (65 days) was carried out in the typical grassland of Inner Mongolia with the optimised closed chamber/GC technique. Compared with the control, cumulative net CH4 consumption decreased 36, 31, and 18% from urine, fresh dung, and compost plots, respectively; net CO2-C output increased by 6.5, 1.5, and 1.2% from urine, fresh dung, and compost treated soil, respectively; about three times as much N2O-N was emitted from urine and the fresh dung treatments during 65 days. Nitrous oxide emission was positively correlated with CO, emission (R = 0.691, P < 0.01) and water-filled pore space (R = 0.698, P < 0.01). The percentages of N2O-N loss of applied-N were 0.44 and 1.05% for urine and fresh dung, respectively. Our results suggest that in autumn in the degraded grassland of Inner Mongolia, the effect of sheep excrement may be ignored when evaluating the total GHG emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the continually increase both in the amount of wastewater disposal and in the treatment rate, more and more sewage sludge has been produced. An economic estimate was taken on the different sewage sludge disposal and treatment technologies, and led to the conclusion that compost is an effective way to make sewage sludge harmless, stable and resourceable. Normally, there are several ways to treat sewage sludge, such as landfill, compost, incineration and so on. These technologies will cost 300-1000 Y per ton of sludge. Among those ways, landfill is the cheapest one and operates easily, however, it just postpones the pollution instead of eventually eliminating the pollution; The amount of the sludge will reduce dramatically after incineration, while incineration will take a very high investment in the beginning, at the same time, it's very hard to maintain running; Sewage sludge will be resourceful after composting treantment, thus makes up the treatment cost, makes composting is the most economical way. Compost production is safe when correctly used, compost is a important way to treat sewage sludge. Oxygen is an important control factor in aerobic composting that has great effects on temperature and microorganisms. The gas gathering and transfering system of an online oxygen monitoring system for composting were bettermented to prolong the monitoring system's running period. The oxygen concentration changes in various aerobic composting stage were studied, and conclusions came to that oxygen concentration changes much faster in the oxygen concentration increasing stage than that in the declining stage; the better the aerobic condition is, the sooner the monitoring system starts to work. The minimal oxygen concentration during a ventilation cycle often falls at the beginning, then ascends in the composting period; at the same time, oxygen concentration changes fast in the early composting stage(temperature increasing stage), much slower in the middle stage(continouns thermophilic stage),and seldom changes in the late composting stage(temperature declining stage). With the help of the oxygen realtime-online monitoring system, oxygen concentrations was measured. During the composting period, water contents was analyzed after sampled. It's found that water contents (WC) and Oxygen concentration can both influence the composting process, and the control rule varies in the various composting stages. Essentially, the rule that water and oxygen control the composting process comes from water counterchecks the oxygen transferring to the composting substrate. The most influential factor to the WC and to the oxygen is the components in the composting pile. In the temperature increasing stage, seldom microorganisms exist in the composting pile with low activity, thus oxygen can meet with microorganisms' need, and WC is the dominant factor. In the high temperature (continouns thermophilic) stage, composting process is controlled by WC and oxygen, essentially by WC, at the same time, their influence somehow is not remarkable. In the temperature declining stage, WC and oxygen influence the composting process little. It's also found that the composting process will differ even if under the same components, thus to equably mix the components can avoid WC focusing in some place and let the composting pile to be aerobic. In one sentence, aerobic state is the most important factor in the composting process, suitable bulking material will be useful to the composting control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leachate may be defined as any liquid percolating through deposited waste and emitted from or contained within a landfill. If leachate migrates from a site it may pose a severe threat to the surrounding environment. Increasingly stringent environmental legislation both at European level and national level (Republic of Ireland) regarding the operation of landfill sites, control of associated emissions, as well as requirements for restoration and aftercare management (up to 30 years) has prompted research for this project into the design and development of a low cost, low maintenance, low technology trial system to treat landfill leachate at Kinsale Road Landfill Site, located on the outskirts of Cork city. A trial leachate treatment plant was constructed consisting of 14 separate treatment units (10 open top cylindrical cells [Ø 1.8 m x 2.0 high] and four reed beds [5.0m x 5.0m x 1.0m]) incorporating various alternative natural treatment processes including reed beds (vertical flow [VF] and horizontal flow [HF]), grass treatment planes, compost units, timber chip units, compost-timber chip units, stratified sand filters and willow treatment plots. High treatment efficiencies were achieved in units operating in sequence containing compost and timber chip media, vertical flow reed beds and grass treatment planes. Pollutant load removal rates of 99% for NH4, 84% for BOD5, 46% for COD, 63% for suspended solids, 94% for iron and 98% for manganese were recorded in the final effluent of successfully operated sequences at irrigation rates of 945 l/m2/day in the cylindrical cells and 96 l/m2/day in the VF reed beds and grass treatment planes. Almost total pathogen removal (E. coli) occurred in the final effluent of the same sequence. Denitrification rates of 37% were achieved for a limited period. A draft, up-scaled leachate treatment plant is presented, based on treatment performance of the trial plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El efecto de los abonos orgánicos sobre las características químicas y microbiológicas del suelo depende del cultivo, tipo de abono, dosis, frecuencia y forma de aplicación. En el caso de la vid, algunos estudios sobre la aplicación de abonos orgánicos (AAO) han reportado incrementos en los nutrientes del suelo y planta. Considerando la escasa información sobre el manejo de compost y vermicompost en suelos de viñedos de Mendoza, el objetivo de esta tesis fue evaluar el efecto de abonos orgánicos en algunas características del suelo y del cultivo. Para ello, en un viñedo ubicado en Mendoza se evaluaron los efectos de una y dos aplicaciones, superficial y enterrada, de compost y vermicompost sobre las características químicas y microbiológicas del suelo, crecimiento y rendimiento de la vid. La duración del ensayo fue de 2 años y la dosis anual fue 8 Mg ha-1. Luego de 360 días, todos los microorganismos evaluados fueron afectados por la AAO. El número de microorganismos celulolíticos fue mayor en las parcelas que recibieron compost (3,08 log10UFC g-1) que en aquellas que recibieron vermicompost (2,66 log10UFC g-1). También fue mayor cuando la aplicación fue superficial (3,07 log10UFC g-1) que cuando fue enterrada (2,67 log10UFC g-1), independientemente del tipo de abono. La AAO no afectó la salinidad del suelo. El fósforo disponible y potasio intercambiable incrementaron 237 por ciento y 28 por ciento en suelos abonados respecto de suelos al inicio del ensayo. El contenido de potasio total en pecíolo incrementó 15 por ciento en parcelas que recibieron abono orgánico respecto de las que no recibieron. La AAO en suelos de regadío de la zona árida de Mendoza se considera una alternativa promisoria por su impacto en algunas poblaciones microbianas, su efecto sobre el contenido de nutrientes en suelo y propiedades que hacen a la salinidad edáfica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p.75-80