959 resultados para CMF, molecular cloud, extraction algorithm
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
Molecular characterization of Cryptosporidium spp.oocysts in clinical samples is useful for public health since it allows the study of sources of contamination as well as the transmission in different geographical regions. Although widely used in developed countries, in Brazil it is restricted to academic studies, mostly using commercial kits for the extraction of genomic DNA, or in collaboration with external reference centers, rendering the method expensive and limited. The study proposes the application of the modifications recently introduced in the method improving feasibility with lower cost. This method was efficient for clinical samples preserved at -20 °C for up to six years and the low number of oocysts may be overcomed by repetitions of extraction.
Resumo:
Epidemiological studies on giardiasis by using molecular techniques such as RAPD (Randomly Amplified Polymorphic DNA) may give information on factors related to the transmission of Giardia duodenalis. The aim of this work was to assess the epidemiology of G. duodenalis in 101 children attended at a daycare center in Presidente Bernardes, SP, Brazil. After parasitological examinations in feces samples, 15 children presented cysts of G. duodenalis. Their respective parents, brothers and pets, besides the daycare center workers, also had their feces submitted to parasitological analysis. Seven mothers and nine brothers also presented G. duodenalis cysts, while fathers, daycare workers and pets (dogs) did not presented the parasite. Besides the 15 cases with G. duodenalis, other 23 children presented other enteroparasites (Entamoeba coli, Endolimax nana, Enterobius vermicularis, Ascaris lumbricoides and Trichuris trichiura). Samples of G. duodenalis cysts from children and their relatives were submitted to molecular typing by RAPD after genomic DNA extraction and amplification of a fragment of the 18S rDNA region by PCR. After examining 31 isolates of G. duodenalis (children and their respective mothers and brothers), it was concluded that the parasite transmission occurred in children, probably during daily cohabitation at the daycare center, but not at home among their relatives or pets.
Resumo:
Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%.
Resumo:
Asymptomatic Plasmodium infection is a new challenge for public health in the American region. The polymerase chain reaction (PCR) is the best method for diagnosing subpatent parasitemias. In endemic areas, blood collection is hampered by geographical distances and deficient transport and storage conditions of the samples. Because DNA extraction from blood collected on filter paper is an efficient method for molecular studies in high parasitemic individuals, we investigated whether the technique could be an alternative for Plasmodium diagnosis among asymptomatic and pauciparasitemic subjects. In this report we compared three different methods (Chelex®-saponin, methanol and TRIS-EDTA) of DNA extraction from blood collected on filter paper from asymptomatic Plasmodium-infected individuals. Polymerase chain reaction assays for detection of Plasmodium species showed the best results when the Chelex®-saponin method was used. Even though the sensitivity of detection was approximately 66% and 31% for P. falciparum and P. vivax, respectively, this method did not show the effectiveness in DNA extraction required for molecular diagnosis of Plasmodium. The development of better methods for extracting DNA from blood collected on filter paper is important for the diagnosis of subpatent malarial infections in remote areas and would contribute to establishing the epidemiology of this form of infection.
Resumo:
Currently there are several methods to extract bacterial DNA based on different principles. However, the amount and the quality of the DNA obtained by each one of those methods is highly variable and microorganism dependent, as illustrated by coagulase-negative staphylococci (CoNS) which have a thick cell wall that is difficult to lyse. This study was designed to compare the quality and the amount of CoNS DNA, extracted by four different techniques: two in-house protocols and two commercial kits. DNA amount and quality determination was performed through spectrophotometry. The extracted DNA was also analyzed using agarose gel electrophoresis and by PCR. 267 isolates of CoNS were used in this study. The column method and thermal lyses showed better results with regard to DNA quality (mean ratio of A260/280 = 1.95) and average concentration of DNA (), respectively. All four methods tested provided appropriate DNA for PCR amplification, but with different yields. DNA quality is important since it allows the application of a large number of molecular biology techniques, and also it's storage for a longer period of time. In this sense the extraction method based on an extraction column presented the best results for CoNS.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Introduction Toxoplasmosis may be life-threatening in fetuses and in immune-deficient patients. Conventional laboratory diagnosis of toxoplasmosis is based on the presence of IgM and IgG anti-Toxoplasma gondii antibodies; however, molecular techniques have emerged as alternative tools due to their increased sensitivity. The aim of this study was to compare the performance of 4 PCR-based methods for the laboratory diagnosis of toxoplasmosis. One hundred pregnant women who seroconverted during pregnancy were included in the study. The definition of cases was based on a 12-month follow-up of the infants. Methods Amniotic fluid samples were submitted to DNA extraction and amplification by the following 4 Toxoplasma techniques performed with parasite B1 gene primers: conventional PCR, nested-PCR, multiplex-nested-PCR, and real-time PCR. Seven parameters were analyzed, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and efficiency (Ef). Results Fifty-nine of the 100 infants had toxoplasmosis; 42 (71.2%) had IgM antibodies at birth but were asymptomatic, and the remaining 17 cases had non-detectable IgM antibodies but high IgG antibody titers that were associated with retinochoroiditis in 8 (13.5%) cases, abnormal cranial ultrasound in 5 (8.5%) cases, and signs/symptoms suggestive of infection in 4 (6.8%) cases. The conventional PCR assay detected 50 cases (9 false-negatives), nested-PCR detected 58 cases (1 false-negative and 4 false-positives), multiplex-nested-PCR detected 57 cases (2 false-negatives), and real-time-PCR detected 58 cases (1 false-negative). Conclusions The real-time PCR assay was the best-performing technique based on the parameters of Se (98.3%), Sp (100%), PPV (100%), NPV (97.6%), PLR (∞), NLR (0.017), and Ef (99%).
Resumo:
Abstract: INTRODUCTION : Molecular analyses are auxiliary tools for detecting Koch's bacilli in clinical specimens from patients with suspected tuberculosis (TB). However, there are still no efficient diagnostic tests that combine high sensitivity and specificity and yield rapid results in the detection of TB. This study evaluated single-tube nested polymerase chain reaction (STNPCR) as a molecular diagnostic test with low risk of cross contamination for detecting Mycobacterium tuberculosis in clinical samples. METHODS: Mycobacterium tuberculosis deoxyribonucleic acid (DNA) was detected in blood and urine samples by STNPCR followed by agarose gel electrophoresis. In this system, reaction tubes were not opened between the two stages of PCR (simple and nested). RESULTS: STNPCR demonstrated good accuracy in clinical samples with no cross contamination between microtubes. Sensitivity in blood and urine, analyzed in parallel, was 35%-62% for pulmonary and 41%-72% for extrapulmonary TB. The specificity of STNPCR was 100% in most analyses, depending on the type of clinical sample (blood or urine) and clinical form of disease (pulmonary or extrapulmonary). CONCLUSIONS: STNPCR was effective in detecting TB, especially the extrapulmonary form for which sensitivity was higher, and had the advantage of less invasive sample collection from patients for whom a spontaneous sputum sample was unavailable. With low risk of cross contamination, the STNPCR can be used as an adjunct to conventional methods for diagnosing TB.
Resumo:
Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.
Molecular mass distribution of materials solubilized by xylanase treatment of Douglas-Fir kraft pulp
Resumo:
Irgazyme, a commercial xylanase preparation from Trichoderma longibrachiatum, and xylanase D a purified enzyme from Trichoderma harzianum E58 were tested for their ability to enhance peroxide bleaching of Douglas-fir (Pseudotsuga menziesii) kraft pulp. A treatment with Irgazyme caused a much larger increase in brightness than did xylanase D. A double xylanase treatment with Irgazyme, before and after peroxide bleaching, resulted in the highest final brightness. Alkaline extraction increased the brightness of Douglas-fir brownstock. Treatment with Irgazyme released more lignin and carbohydrates than did xylanase D. The molecular mass of the lignin extracted from Irgazyme-treated brownstock was much larger than that from the control pulp. The lignin-like macromolecules directly solubilized from peroxide bleached pulps were substantially larger than those solubilized from the brownstock, irrespective of whether they were produced during xylanase or control treatments. This indicates that different kinds of materials were solubilized when a xylanase treatment was applied at different points in the bleaching sequence and raises concerns about the role of lignin entrapment in the mechanism by which xylanase enhances peroxide bleaching.
Resumo:
Las Enfermedades de Atesoramiento de Glucógeno (EAGs) también llamadas Glucogenosis comprenden un grupo de entidades causadas por una deficiencia enzimática específica relacionada con la vía de síntesis o degradación de esta macromolécula. La heterogeneidad fenotípica de los pacientes afectados dificulta la identificación de las diferentes variantes de EAG y por ende la correcta definición nosológica. En el Centro de Estudio de las Metabolopatías Congénitas, CEMECO, se fueron definiendo los diferentes tipos de Glucogenosis a través de una estrategia multidisciplinaria que integra distintos niveles de investigación clínica y complementaria, laboratorio metabólico especializado, enzimático, histomorfológico y de análisis molecular. Sin embargo, en algunos enfermos, entre los que se encuentran aquellos con defectos en el sistema de la fosforilasa hepática (EAG-VI y EAG-IX), la exacta definición nosológica aún no está resulta. La EAG-VI se refiere a un defecto en la fosforilasa hepática, enzima codificada por el gen PYGL, mientras que la EAG-IX es causada por un defecto genético en una de las subunidades de la fosforilasa b quinasa hepática codicadas por los genes PHKA2, PHKB y PHKG2, respectivamente. El objetivo del presente trabajo es propender a la definición nosológica de pacientes con defectos en el sistema de la fosforilasa mediante una estrategia de análisis molecular investigando los genes PYGL, PHKA2, PHKB y PHKG2. Los pacientes incluidos en este estudio deberán ser compatibles de padecer una EAG-VI o EAG-IX sobre la base de síntomas clínicos y hallazgos bioquímicos. La metodología incluirá la determinación de la enzima fosforilasa b quinasa en glóbulos rojos y dentro del análisis molecular la extracción de DNA genómico a partir de sangre entera para la amplificación por PCR de los exones más las uniones exon/intron de los genes PHKG2 y PYGL y la extracción de RNA total y obtención de cDNA para posterior amplificación de los cDNA PHKA2 y PHKB. Todos los fragmentos amplificados serán sometidos a análisis de secuencia de nucleótidos. Resultados esperados. Este trabajo, primero en Argentina, permitirá establecer las bases moleculares de los defectos del sistema de la fosforilasa hepática (EAG-VI y EAG-IX). El poder lograr este nivel de investigación traerá aparejado, una oferta integrativa en el vasto capítulo de las glucogenosis hepáticas, con extraordinaria significación en la práctica asistencial para el manejo, pronóstico y correspondiente asesoramiento genético. Hepatic glycogen storage diseases (GSDs) are a group of disorders produced by a deficiency in a specific protein involved in the metabolism of glycogen causing different types of GSDs. Phenotypic heterogeneity of affected patients difficult to identify the different GSD variants and therefore the correct definition of the disease. In the “Centro de Estudio de las Metabolopatías Congénitas”, CEMECO, were defined the different GSD types by a protocol which included complex gradual levels of clinical, biochemical, enzymatic and morphological investigation. However, in some patients, like those one with defects in the hepatic phosphorylase system (GSD-VI and GSD-IX) the exact definition of the disease has not yet been resolved. The GSD-VI is produced by a defect in the PYGL gen that encode the liver phosphorylase, while the GSD-IX is caused by a genetic defect in one of the Phosphorylase b kinase subunits, encoded by the PHKA2, PHKB and PHKG2 genes, respectively. The aim of the present study is to define the phosphorylase system defects in argentinian patients through a molecular strategy that involve the investigation of PYGL, PHKA2, PHKB and PHKG2 genes. Patients included in the present study must be compatible with a GSD-VI or GSD-IX on the bases of clinical symptoms and biochemical findings. The phosphorylase b kinase activity will be assay on in blood red cells. The molecular study will include genomic DNA extraction for the amplification of PHKG2 and PYGL genes and the total RNA extraction for amplification of the PHKA2 and PHKB cDNA by PCR. All PCR-amplified fragments will be subjected to direct nucleotide sequencing. This work, first in Argentina, will make possible to establish the molecular basis of the defects on the hepatic phosphorylase system (GSD-VI and GSD IX). To achieve this level of research will entail advance in the study of the hepatic glycogen storage disease, with extraordinary significance in the treatment, prognosis and the genetic counselling.
Resumo:
Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.
Resumo:
The present study was performed to assess the interlaboratory reproducibility of the molecular detection and identification of species of Zygomycetes from formalin-fixed paraffin-embedded kidney and brain tissues obtained from experimentally infected mice. Animals were infected with one of five species (Rhizopus oryzae, Rhizopus microsporus, Lichtheimia corymbifera, Rhizomucor pusillus, and Mucor circinelloides). Samples with 1, 10, or 30 slide cuts of the tissues were prepared from each paraffin block, the sample identities were blinded for analysis, and the samples were mailed to each of seven laboratories for the assessment of sensitivity. A protocol describing the extraction method and the PCR amplification procedure was provided. The internal transcribed spacer 1 (ITS1) region was amplified by PCR with the fungal universal primers ITS1 and ITS2 and sequenced. As negative results were obtained for 93% of the tissue specimens infected by M. circinelloides, the data for this species were excluded from the analysis. Positive PCR results were obtained for 93% (52/56), 89% (50/56), and 27% (15/56) of the samples with 30, 10, and 1 slide cuts, respectively. There were minor differences, depending on the organ tissue, fungal species, and laboratory. Correct species identification was possible for 100% (30 cuts), 98% (10 cuts), and 93% (1 cut) of the cases. With the protocol used in the present study, the interlaboratory reproducibility of ITS sequencing for the identification of major Zygomycetes species from formalin-fixed paraffin-embedded tissues can reach 100%, when enough material is available.