996 resultados para CLIMATE OSCILLATIONS
Resumo:
Researchers developing climate-based forecasts, workshops, software tools and information to aid grazier decisions undertook an evaluation study to enhance planning and benchmark impact. One hundred graziers in Western Queensland were randomly selected from 7 shires and surveyed by mail and telephone (43 respondents) to explore levels of knowledge and use of climate information, practices and information needs. We found 36% of respondents apply the Southern Oscillation Index to property decisions but 92% were unaware El Niño Southern Oscillation’s predictive signal in the region is greater for pasture growth than rainfall, suggesting they may not recognise the potential of pasture growth forecasts. Almost 75% of graziers consider they are conservative or risk averse in their attitude to managing their enterprise. Mail respondents (n= 20) if given a 68%, on average, probability of exceeding median rainfall forecast may change a decision; almost two-thirds vary stocking rate based on forage available, last year’s pasture growth or the Southern Oscillation Index; the balance maintain a constant stocking rate strategy; 90% have access to a computer; 75% to the internet and 95% have a fax. This paper presents findings of the study and draws comparisons with a similar study of 174 irrigators in the Northern Murray-Darling Basin (Aust. J. Exp. Ag. 44, 247-257). New insights and information gained are helping the team better understand client needs and plan, design and extend tools and information tailored to grazier knowledge, practice, information needs and preferences. Results have also provided a benchmark against which to measure project impact and have influenced the team to make important changes to their project planning, activities and methods for transferring technology tailored to grazier preferences.
Resumo:
The sea level pressure (SLP) variability in 30-60 day intraseasonal timescales is investigated using 25 years of reanalysis data addressing two issues. The first concerns the non-zero zonal mean component of SLP near the equator and its meridional connections, and the second concerns the fast eastward propagation (EP) speed of SLP compared to that of zonal wind. It is shown that the entire globe resonates with high amplitude wave activity during some periods which may last for few to several months, followed by lull periods of varying duration. SLP variations in the tropical belt are highly coherent from 25A degrees S to 25A degrees N, uncorrelated with variations in mid latitudes and again significantly correlated but with opposite phase around 60A degrees S and 65A degrees N. Near the equator (8A degrees S-8A degrees N), the zonal mean contributes significantly to the total variance in SLP, and after its removal, SLP shows a dominant zonal wavenumber one structure having a periodicity of 40 days and EP speeds comparable to that of zonal winds in the Indian Ocean. SLP from many of the atmospheric and coupled general circulation models show similar behaviour in the meridional direction although their propagation characteristics in the tropical belt differ widely.
Impact of diurnal forcing on intraseasonal sea surface temperature oscillations in the Bay of Bengal
Resumo:
The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is approximate to 0.05 degrees C in the southern bay while it is approximate to 0.02 degrees C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.
Resumo:
Climatic and environmental records from low, middle, and high latitude ice cores greatly increase our knowledge of the course of past events. This historical perspective is essential to predict climatic oscillations, dominated as they may be by increasing greenhouse gas concentrations. Forcing factors, internal and external, that have operated in the past will continue to influence the course of events.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The characterization of inter-decadal climate variability in the Southern Hemisphere is severely constrained by the shortness of the instrumental climate records. To help relieve this constraint, we have developed and analyzed a reconstruction of warm-season (November-April) temperatures from Tasmanian tree rings that now extends back to 800 BC. A detailed analysis of this reconstruction in the time and frequency domains indicates that much of the inter-decadal variability is principally confined to four frequency bands with mean periods of 31, 57, 77, and 200 years. ... In so doing, we show how a future greenhouse warming signal over Tasmania could be masked by these natural oscillations unless they are taken into account.
Resumo:
Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations.
Resumo:
Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998–2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño–Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness.
Resumo:
Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.
Resumo:
Quaternary-aged calcrete horizons are common weathering products in arid and semi-arid regions. It is, however, unclear how calcrete forming processes respond to the major oscillations in climate that occur over the Quaternary period. This paper presents a U-series-based calcrete age database from the Sorbas basin, southeast Spain. The study constructs an age frequency distribution of these ages which is consequently compared to a range of palaeoenvironmental records from the Mediterranean. The age distribution presented here suggests that the formation of pedogenic calcrete horizons in the Sorbas basin primarily occurs during 'warm' isotope stages (MIS 1 and 5), with very few calcrete ages occurring during cold glacial/stadial stages (MIS 2, 3 and 4). It is suggested that this is a function of the environments that existed during 'warm' isotope stages being more conducive to calcrete development than those that existed during cold climate episodes. In a semi-arid region such as the Sorbas basin it is likely that increased aridity during glacial stages, coupled with reduced vegetation and accelerated landscape instability, was crucial in reducing rates of calcrete formation. In a semi-arid region such as southeast Spain, calcrete formation during the Quaternary, therefore, oscillates with climate change but is primarily a "warm" episode phenomenon. It is suggested that further studies are required to see how calcrete genesis responds to environmental change in more humid parts of the Mediterranean. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.
Resumo:
Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene.
Resumo:
Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.
Resumo:
Two late Paleozoic glacial rhythmite successions from the Itarare Group (Parana Basin, Brazil) were examined for paleoclimate variations. Paleomagnetic (characteristic remanent magnetization, ChRM) and magnetic susceptibility (K(z)) measurements taken from the rhythmites are interpreted as paleoclimatic proxies. Ratios of low-frequency components in the K(z) variations suggest Milankovitch periodicities; this leads to recognition of other, millennial-scale variations reminiscent of abrupt climate changes during late Quaternary time, and are suggestive of Bond cycles and the 2.4 k.y. solar cycle. We infer from these patterns that millennial-scale climate change is not restricted to the Quaternary Period, and that millennial forcing mechanisms may have been prevalent throughout geologic time.
Resumo:
A lacustrine sediment core from Fiddaun, western Ireland was studied to reconstruct summer temperature changes during the Weichselian Lateglacial. This site is located close to the Atlantic Ocean; and so is potentially sensitive to climatic changes associated with changes in ocean circulation. The record, comprising the end of the Weichselian Pleniglacial to the early Holocene, was analysed for fossil chironomids, lithology, and oxygen and carbon isotopes in the sedimentary carbonates. These proxies clearly show rapid warming at the onset of the Lateglacial Interstadial, relatively high summer temperatures during the Interstadial, pronounced cooling during the Younger Dryas, and subsequent warming at the transition to the Holocene. Chironomid-inferred mean July air temperatures for the Interstadial are ~12.5–14.5 °C, ~7.5 °C for the Younger Dryas, and ~15.0 °C for the early Holocene. Furthermore, this research provides evidence for at least two cold events during the Interstadial. These more moderate temperature oscillations can be correlated to Greenland Interstadial events 1b and 1d, on the basis of the age-depth model for the Fiddaun sequence. Based on multiple proxies, the first cold oscillation (GI-1d) was the more severe of the two in Ireland.