988 resultados para CELL-ENVELOPE
Resumo:
The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (Winey et al., 1991). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.
Resumo:
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.
Resumo:
Nuclear envelope breakdown was investigated during meiotic maturation of starfish oocytes. Fluorescent 70-kDa dextran entry, as monitored by confocal microscopy, consists of two phases, a slow uniform increase and then a massive wave. From quantitative analysis of the first phase of dextran entry, and from imaging of green fluorescent protein chimeras, we conclude that nuclear pore disassembly begins several minutes before nuclear envelope breakdown. The best fit for the second phase of entry is with a spreading disruption of the membrane permeability barrier determined by three-dimensional computer simulations of diffusion. We propose a new model for the mechanism of nuclear envelope breakdown in which disassembly of the nuclear pores leads to a fenestration of the nuclear envelope double membrane.
Resumo:
Retrovirus infection is initiated by receptor-dependent fusion of the envelope to the cell membrane. The modular organization of the envelope protein of C type retroviruses has been exploited to investigate how binding of the surface subunit (SU) to receptor triggers fusion mediated by the transmembrane (TM) subunit. We show that deletion of the receptor-binding domain (RBD) from SU of Friend murine leukemia virus (Fr-MLV) abolishes infection that is restored by supplying RBD as a soluble protein. Infection by this mechanism remains dependent on receptor expression. When membrane attachment of the virus lacking RBD is reestablished by inserting the hormone erythropoietin, infection remains dependent on the RBD/receptor complex. However, infection increases 50-fold to 5 × 105 units/ml on cells that also express the erythropoietin receptor. Soluble RBD from Fr-MLV also restores infection by amphotropic and xenotropic MLVs in which RBD is deleted. These experiments demonstrate that RBD has two functions: mediating virus attachment and activating the fusion mechanism. In addition, they indicate that receptor engagement triggers fusion by promoting a subgroup-independent functional interaction between RBD and the remainder of SU and/or TM.
Resumo:
Surface proteins of Gram-positive bacteria play important roles during the pathogenesis of human infections and require sortase for anchoring to the cell-wall envelope. Sortase cleaves surface proteins at the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine (T) and the amino group of cell-wall crossbridges. The NMR structure of sortase reveals a unique β-barrel structure, in which the active-site sulfhydryl of cysteine-184 is poised for ionization by histidine-120, presumably enabling the resultant thiolate to attack the LPXTG peptide. Calcium binding near the active site stimulates catalysis, possibly by altering the conformation of a surface loop that recognizes newly translocated polypeptides. The structure suggests a mechanistic relationship to the papain/cathepsin proteases and should facilitate the design of new antiinfective agents.
Resumo:
Semipermeable cell walls or apoplastic “membranes” have been hypothesized to be present in various plant tissues. Although often associated with suberized or lignified walls, the wall component that confers osmotic semipermeability is not known. In muskmelon (Cucumis melo L.) seeds, a thin, membranous endosperm completely encloses the embryo, creating a semipermeable apoplastic envelope. When dead muskmelon seeds are allowed to imbibe, solutes leaking from the embryo are retained within the envelope, resulting in osmotic water uptake and swelling called osmotic distention (OD). The endosperm envelope of muskmelon seeds stained with aniline blue, which is specific for callose (β-1,3-glucan). Outside of the aniline-blue-stained layer was a Sudan III- and IV-staining (lipid-containing) layer. In young developing seeds 25 d after anthesis (DAA) that did not exhibit OD, the lipid layer was already present but callose had not been deposited. At 35 DAA, callose was detected as distinct vesicles or globules in the endosperm envelope. A thick callose layer was evident at 40 DAA, coinciding with development of the capacity for OD. Removal of the outer lipid layer by brief chloroform treatment resulted in more rapid water uptake by both viable and nonviable (boiled) seeds, but did not affect semipermeability of the endosperm envelope. The aniline-blue-staining layer was digested by β-1,3-glucanase, and these envelopes lost OD. Thus, apoplastic semipermeability of the muskmelon endosperm envelope is dependent on the deposition of a thick callose-containing layer outside of the endosperm cell walls.
Resumo:
A recombinant rabies virus (RV) mutant deficient for the surface spike glycoprotein (G) gene was used to study the incorporation of envelope proteins from HIV-1 expressed from transfected plasmids. A hybrid HIV-1 protein in which the cytoplasmic domain was replaced with that of RV G was incorporated into the virus envelope and rescued the infectivity of the RV mutant. The RV(HIV-1) pseudotype viruses could infect only CD4+ cells, and their infectivity was neutralized specifically by anti-HIV-1 sera. In contrast to the chimeric protein, wild-type HIV-1 envelope protein or mutants with truncated cytoplasmic domains failed to produce pseudotyped particles. This indicates the presence of a specific signal in the RV G cytoplasmic domain, allowing correct incorporation of a spike protein into the envelope of rhabdovirus particles. The possibility of directing the cell tropism of RV by replacement of the RV G with proteins of defined receptor specificity should prove useful for future development of targetable gene delivery vectors.
Resumo:
Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.
Resumo:
With efforts underway to develop a preventive human immunodeficiency virus type 1 (HIV-1) vaccine, it remains unclear which immune responses are sufficient to protect against infection and whether prior HIV-1 immunity can alter the subsequent course of HIV-1 infection. We investigated these issues in the context of a volunteer who received six HIV-1LAI envelope immunizations and 10 weeks thereafter acquired HIV-1 infection through a high-risk sexual exposure. In contrast to nonvaccinated acutely infected individuals, anamnestic HIV-1-specific B- and T-cell responses appeared within 3 weeks in this individual, and neutralizing antibody preceded CD8+ cytotoxic responses. Despite an asymptomatic course and an initial low level of detectable infectious virus, a progressive CD4+ cell decline and dysfunction occurred within 2 years. Although vaccination elicited immunity to HIV-1 envelope, which was recalled upon HIV-1 exposure, it was insufficient to prevent infection and subsequent immunodeficiency.
Resumo:
Hepatitis C virus (HCV) is a major cause of chronic hepatitis. The virus does not replicate efficiently in cell cultures, and it is therefore difficult to assess infection-neutralizing antibodies and to evaluate protective immunity in vitro. To study the binding of the HCV envelope to cell-surface receptors, we developed an assay to assess specific binding of recombinant envelope proteins to human cells and neutralization thereof. HCV recombinant envelope proteins expressed in various systems were incubated with human cells, and binding was assessed by flow cytometry using anti-envelope antibodies. Envelope glycoprotein 2 (E2) expressed in mammalian cells, but not in yeast or insect cells, binds human cells with high affinity (Kd approximately 10(-8) M). We then assessed antibodies able to neutralize E2 binding in the sera of both vaccinated and carrier chimpanzees, as well as in the sera of humans infected with various HCV genotypes. Vaccination with recombinant envelope proteins expressed in mammalian cells elicited high titers of neutralizing antibodies that correlated with protection from HCV challenge. HCV infection does not elicit neutralizing antibodies in most chimpanzees and humans, although low titers of neutralizing antibodies were detectable in a minority of infections. The ability to neutralize binding of E2 derived from the HCV-1 genotype was equally distributed among sera from patients infected with HCV genotypes 1, 2, and 3, demonstrating that binding of E2 is partly independent of E2 hypervariable regions. However, a mouse monoclonal antibody raised against the E2 hypervariable region 1 can partially neutralize binding of E2, indicating that at least two neutralizing epitopes, one of which is hypervariable, should exist on the E2 protein. The neutralization-of-binding assay described will be useful to study protective immunity to HCV infection and for vaccine development.
Resumo:
A synthetic heptadecapeptide, CKS-17, represents the highly conserved amino acid sequences occurring within the transmembrane envelope protein of many animal and human retroviruses. CKS-17 has been demonstrated to exhibit suppressive properties for numerous immune functions. We have recently shown that CKS-17 acts as an immunomodulatory epitope causing an imbalance of human type 1 and type 2 cytokine production and suppression of cell-mediated immunities. cAMP, an intracellular second messenger, plays an important role in regulation of cytokine biosynthesis--i.e., elevation of intracellular cAMP levels selectively inhibits type 1 cytokine production but has no effect or enhances type 2 cytokine production. Here, we demonstrate that CKS-17 induces dramatic rises in the intracellular cAMP levels of a human monocyte cell line and of human peripheral blood mononuclear cells in a time- and dose-dependent manner. A peptide corresponding to the reverse sequence of CKS-17, used as control, has no effect on intracellular cAMP levels. The cAMP-inducing ability of CKS-17 is significantly blocked by SQ-22536, an inhibitor of adenylate cyclase. These results indicate that CKS-17, a highly conserved component of the transmembrane proteins of immunosuppressive retroviruses, induces increased intracellular levels of cAMP via activation of adenylate cyclase and suggest that this retroviral envelope peptide may differentially modulate type 1 and type 2 cytokine production through elevation of intracellular cAMP levels.
Resumo:
We report characterization of a human T-cell lymphotropic virus type II (HTLV-II) isolated from an interleukin 2-dependent CD8 T-cell line derived from peripheral blood mononuclear cells of a healthy, HTLV-II-seropositive female Bakola Pygmy, aged 59, living in a remote equatorial forest area in south Cameroon. This HTLLV-II isolate, designated PYGCAM-1, reacted in an indirect immunofluorescence assay with HTLV-II and HTLV-I polyclonal antibodies and with an HTLV-I/II gp46 monoclonal antibody but not with HTLV-I gag p19 or p24 monoclonal antibodies. The cell line produced HTLV-I/II p24 core antigen and retroviral particles. The entire env gene (1462 bp) and most of the long terminal repeat (715 bp) of the PYGCAM-1 provirus were amplified by the polymerase chain reaction using HTLV-II-specific primers. Comparison with the long terminal repeat and envelope sequences of prototype HTLV-II strains indicated that PYGCAM-1 belongs to the subtype B group, as it has only 0.5-2% nucleotide divergence from HTLV-II B strains. The finding of antibodies to HTLV-II in sera taken from the father of the woman in 1984 and from three unrelated members of the same population strongly suggests that PYGCAM-1 is a genuine HTLV-II that has been present in this isolated population for a long time. The low genetic divergence of this African isolate from American isolates raises questions about the genetic variability over time and the origin and dissemination of HTLV-II, hitherto considered to be predominantly a New World virus.
Resumo:
UNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.
Resumo:
The HIV-1 genome contains several genes coding for auxiliary proteins, including the small Vpr protein. Vpr affects the integrity of the nuclear envelope and participates in the nuclear translocation of the preintegration complex containing the viral DNA. Here, we show by photobleaching experiments performed on living cells expressing a Vpr-green fluorescent protein fusion that the protein shuttles between the nucleus and the cytoplasm, but a significant fraction is concentrated at the nuclear envelope, supporting the hypothesis that Vpr interacts with components of the nuclear pore complex. An interaction between HIV-1 Vpr and the human nucleoporin CG1 (hCG1) was revealed in the yeast two-hybrid system, and then confirmed both in vitro and in transfected cells. This interaction does not involve the FG repeat domain of hCG1 but rather the N-terminal region of the protein. Using a nuclear import assay based on digitonin-permeabilized cells, we demonstrate that hCG1 participates in the docking of Vpr at the nuclear envelope. This association of Vpr with a component of the nuclear pore complex may contribute to the disruption of the nuclear envelope and to the nuclear import of the viral DNA.
Resumo:
Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids. This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology.