947 resultados para C-Mn steel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"New York, N.Y. February 13, 1952"--V. 3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title page inserted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Grain boundaries (GBs), particularly ferrite: ferrite GBs, of X70 pipeline steel were characterized using analytical electron microscopy (AEM) in order to understand its intergranular stress corrosion cracking (IGSCC) mechanism(s). The microstructure consisted of ferrite (alpha), carbides at ferrite GBs, some pearlite and some small precipitates inside the ferrite grains. The precipitates containing Ti, Nb, V and N were identified as complex carbo-nitrides and designated as (Ti, Nb, WC, N). The GB carbides occurred (1) as carbides along ferrite GBs, (2) at triple points, and (3) at triple points and extending along the three ferrite GBs. The GB carbides were Mn rich, were sometimes also Si rich, contained no micro-alloying elements (Ti, Nb, V) and also contained no N. It was not possible to measure the GB carbon concentration due to surface hydrocarbon contamination despite plasma cleaning and glove bag transfer from the plasma cleaner to the electron microscope. Furthermore, there may not be enough X-ray signal from the small amount of carbon at the GBs to enable measurement using AEM. However, the microstructure does indicate that carbon does segregate to alpha : alpha GBs during microstructure development. This is particularly significant in relation to the strong evidence in the literature linking the segregation of carbon at GBs to IGSCC. It was possible to measure all other elements of interest. There was no segregation at alpha : alpha GBs, in particular no S, P and N, and also no segregation of the micro-alloying elements, Ti, Nb and V. (C) 2003 Kluwer Academic Publishers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study has been made of the fracture modes associated with toughness minima, observed in notched impact tests at 173K, for a weldable CrMoV steel, quenched from different austenitising temperatures, and tempered in the range 300-900K. The fracture mode at 623K varied from 100% transgranular cleavage for an austenitising temperature of 1523K. The results are discussed in terms of mechanisms for 350 ºC embrittlement, such mechanisms require modification to allow for the difficulty of dissolving alloy carbides at low austenitising temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Bedford Institute of Oceanography provided ship time on the C.S.S. Hudson during the B.I.0. 1967 Metrology and IODAL Cruise for surveying two separate bottom features in the North Atlantic; the Flemish Cap and the San Pablo Seamount one of the Kelvin Seamounts (also known as the New England Seamounts) about 400 miles SSE of Halifax, Nova Scotia. Underwater photography, dredging, and drilling showed San Pablo seamount to have a very considerable covering of manganese deposit, which may be recoverable by mining. San Pablo Seamount was surveyed and sampled; good hauls were made both on the top and on the slopes, at various depths from 500-1000 fathoms; in all cases samples of an unusual stratified manganese-iron ore were recovered. In the hope of gaining additional information in the immediate sample area, one of the dredges had been previously modified to accommodate underwater photographic equipment. X-ray chemical analyses indicate that the ore contains 20 to 25 per cent MnO2, with similar amounts of Fe2O3. Since bottom photographs indicate that these deposits form a continuous cover 1 foot to 3 feet thick over most of the seamount, it is estimated that there are ore reserves in the order of 10 to 30 M tons above 1,000 fathoms.