996 resultados para C-11 HYDROCARBONS
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A novel series of linear, high molecular weight polymers were synthesized by one-pot, superacid-catalyzed reaction of acenaphthenequinone (1) with aromatic hydrocarbons. The reactions were performed at room temperature in the Bronsted superacid CF3SO3H (trifluoromethanesulfonic acid, TFSA) and in a mixture of TFSA with methanesulfonic acid (MSA) and trifluoroacetic acid (TFA), which was used as both solvent and a medium for generation of electrophilic species from acenaphthenequinone. The polymer-forming reaction was found to be dependent greatly on the acidity of the reaction medium, as judged from the viscosity of the polymers obtained. Polycondensations of acenaphthenequinone with 4,4'-diphenoxybenzophenone (f), 1,3-bis(4-phenoxybenzoyl)benzene (g), 1,4-bis(4-phenoxybenzoyl)benzene (h), 1,10-bis(4-phenoxyphenyl)decane-1,10-dione (i), 2,6-diphenoxybenzonitrile), 2,6-diphenoxybenzoic acid (k), and 2-(4-biphenylyl)-6-phenylbenzoxazole (1) proceeded in a reaction medium of wide range of acidity, including pure TFSA (Hammett acidity function H-0 of pure TFSA is -14.1), whereas condensation of 1 with biphenyl, terphenyl, diphenyl ether, and 1,4-diphenoxybenzene needed a reaction medium of acidity H-0 less than -11.5. A possible reaction mechanism is suggested. The polymers obtained were found to be soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. H-1 and C-13 NMR analyses of the polymers synthesized revealed their linear, highly regular structure. The polymers also possess high thermostability. Char yields for polymers 3a, 3c, 3d, and 3l in nitrogen were close to 80% at 1000 degrees C.
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
print number 67
Resumo:
print number 78
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polycyclic aromatic hydrocarbons (PAH) were measured in smoke samples from wood carbonization during charcoal production, in both particulate matter (PM) and gaseous phases. Samples were acquired using a medium-volume air sampler at 1.5 m distance from the furnace. Particle-bound PAH were collected on Fluoropore polytetrafluoroethylene filters and gas-phase PAH were collected into sorbent tubes with XAD-2 resin. PAH were extracted with dichloromethane-methanol and analyzed using gas chromatography-mass spectrometry. The results showed total emission from the furnace of 26 mu g/m(3) for the 16 PAH and 2.8 mu g/m(3) for the 10 genotoxic PAH (from fluoranthene to benzo[g,h,i]perylene). High emission of 16 PAH in the first 8 h of wood carbonization was detected (64 mu g/m(3); 56% of the total emission). Associated with PM, 11% of the total emission of 16 PAH (in both phases) and 60% of 10 genotoxic PAH were found. Relative ratios (for example, [Phe]/[Phe] + [Ant]) for the PAH of the same molecular weight were obtained and compared with the published data. The concentrations of benzo[a]pyrene equivalent (BaPeq) were estimated using the list of toxic equivalent factors suggested by Nisbet and LaGoy, 1992. The values of 0.30 and 0.06 mg/m3 were obtained for the total concentrations of BaPeq in PM and gaseous phase, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to investigate human leucocyte antigen (HLA) genes in patients chronically infected with hepatitis C virus (HCV) and to analyse the possible role of these genes in the progression of chronic hepatitis C. One hundred and forty-five (145) Brazilian patients infected only with HCV genotype 1 were evaluated. HLA class I (A*, B*, C*) and class II (DRB1*, DQA1*, DQB1*) typing were carried out by PCR-SSO, through Luminex technology. Associations were found with protection against development of liver damage by both DRB1*11 (5.0% versus 18.2%, P = 0.0016, OR = 0.23, CI 95% = 0.090.58; Pc=0.0208) and DRB1*11-DQA1*05-DQB1*03 haplotype (4.2% versus 15.3%, P = 0.0032; OR = 0.24, CI 95% = 0.08-0.64). Liver damage was associated with HLA-C*04 in patients with <20 years of infection (38.4% versus 9.1%, P = 0.002, OR = 6.25, CI 95% = 1.9719.7; Pc=0.0238). It is concluded that HLA alleles can influence the development of liver damage in HCV type-1 chronically infected Brazilian patients.
Resumo:
Fire ants are aggressive Neotropical ants that are extensively similar in general biology and morphology, making species identification difficult. Some fire ant species are top-rated pests spreading throughout the world by trade vessels. Many researchers attempted to sort between invasive and native species by using chemical characters, including patterns of venom alkaloids. The present study is the first to report intraspecific variation in some chemical characters, namely, cuticular hydrocarbons and venom alkaloids, within the Brazilian fire ant species Solenopsis saevissima and also reports on within-nest variations among members of different castes. Two different haplotypes (cryptic species) of S. saevissima were clearly identified, one presenting a predominant combination of the venom alkaloids cis- and trans-2-methyl-6-undecylpiperidine with the cuticular hydrocarbons C23, 3-Me-C23, 10-C 25:1, C25, and 3-Me-C25, and the other a predominant combination of cis- and trans-2-methyl-6-tridecenylpiperidine with predominance of 12-C25:1, C25, 11-Me-C25, 3-Me-C25, 13-C27:1, C27, and 13-Me-C 27. Intranest variations revealed that the proportions among these compounds varied sensibly among workers of different sizes, gynes, and males (no alkaloids were detected in the latter). Larva contained vestiges of the same compounds. The recorded chemical profiles are quite different from previous reports with S. saevissima samples from So Paulo. The finds thus support other recent claims that S. saevissima includes cryptic species; the study, moreover, adds the find that they can occur in the same geographical location. © 2012 Eduardo Gonalves Paterson Fox et al.