565 resultados para Cécile Laborde
Resumo:
Bioresorbable vascular scaffolds (BVS) present different mechanical properties as compared to metallic platform stents. Therefore, the standard procedural technique to achieve appropriate deployment may differ.
Resumo:
The aim of this study was to compare the angiographic changes in coronary geometry of the bioresorbable vascular scaffolds (BVS) and metallic platform stent (MPS) between baseline and follow-up.
Resumo:
To assess the correlation between macular pigment optical density and plasma levels of lutein, zeaxanthin, and fatty acids, especially omega-3 polyunsaturated fatty acids (PUFAs).
Resumo:
Laser Assisted Skin Healing (LASH) was first introduced in 2001 by Capon and Mordon to prevent keloids and hypertrophic scars. LASH requires homogenous heating throughout the full thickness of the skin around the wound. However, LASH therapy with 808-nm diode laser is deemed to be only applicable for phototype I-IV due to melanin absorption. This prospective ex-vivo study aims to evaluate the thermal effects of different wavelengths (808, 1064, 1210 and 1320 nm) on human skin phototype II, IV and VI.
Resumo:
Efavirenz (EFV) causes neuropsychiatric side-effects and an unfavourable blood lipid profile. We investigated the effect of replacing EFV with etravirine (ETR) on patient preference, sleep, anxiety and lipid levels.
Resumo:
Children who grow up in environments that afford them a wide range of microbial exposures, such as traditional farms, are protected from childhood asthma and atopy. In previous studies, markers of microbial exposure have been inversely related to these conditions.
Resumo:
Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.
Resumo:
AIMS: To describe the procedural performance and 30-day outcomes following implantation using the 18 Fr CoreValve Revalving System (CRS) as part of the multicentre, expanded evaluation registry, 1-year after obtaining CE mark approval. METHODS AND RESULTS: Patients with symptomatic severe aortic stenosis and logistic Euroscore > or =15%, or age > or =75 years, or age > or =65 years associated with pre-defined risk factors, and for whom a physician proctor and a clinical specialist were in attendance during the implantation and who collected the clinical data, were included. From April 2007, to April 2008, 646 patients with a mean age of 81 +/- 6.6 years, mean aortic valve area 0.6 +/- 0.2 cm2, and logistic EuroSCORE of 23.1 +/- 13.8% were recruited. After valve implantation, the mean transaortic valve gradient decreased from 49.4 +/- 13.9 to 3 +/- 2 mmHg. All patients had paravalvular aortic regurgitation < or = grade 2. The rate of procedural success was 97%. The procedural mortality rate was 1.5%. At 30 days, the all-cause mortality rate (i.e, including procedural) was 8% and the combined rate of death, stroke and myocardial infarction was 9.3%. CONCLUSIONS: The results of this study demonstrate the high rate of procedural success and a low 30-day mortality in a large cohort of high-risk patients undergoing transcatheter aortic valve implantation (TAVI) with the CRS.
Resumo:
Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype.
Resumo:
The etiology of benign paroxysmal positional vertigo (BPPV) remains obscure in many cases and women are affected more often than men. A recent prospective study, performed in women >50 years of age suffering from recurrent BPPV, showed associated osteopenia or osteoporosis in a large percentage of these patients. These results suggested the possible relationship between recurrent BPPV and a decreased fixation of calcium in bone in women >50 years. To test this hypothesis, an experimental study was performed in adult female rats. Utricular otoconia of female rats in which osteopenia/osteoporosis was induced by bilateral ovariectomy (OVX) were compared to those of sham-operated adult females rats (SHAM), as control group. FIRST STUDY: The morphology of theutricles of OVX and SHAM rats was analyzed with scanning electron microscopy. In osteopenic/osteoporotic rats, the density of otoconia (i.e. the number of otoconia per unit area) was decreased (p = 0.036)and their size was increased (p = 0.036) compared to the control group. SECOND STUDY: To test the role of calcium turnover in such morphological changes, utricular otoconia of 2 other groups of OVX and SHAM rats, previously injected with calcein subcutaneously, were examined by conventional and epifluorescence microscopy. In epifluorescence microscopy, labeling with calcein showed no significant fluorescence in either group. This finding was interpreted as a lack of external calcium turnover into otoconia of adult female rats. The ultrastructural modifications of otoconia in osteopenic/osteoporotic female adult rats as well as the role of estrogenic receptors in the inner ear are discussed. The possible pathophysiological mechanisms which support the relationship between recurrent BPPV in women and the disturbance of the calcium metabolism of osteopenia/osteoporosis are debated.
Resumo:
Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.
Resumo:
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.
Resumo:
OBJECTIVE: Estradiol (E(2)) is known to accelerate reendothelialization and thus prevent intimal thickening and in-stent restenosis after angioplasty. Transplantation experiments with ERalpha(-/-) mice have previously shown that E(2) acts through local and bone marrow cell compartments to enhance endothelial healing. However, the downstream mechanisms induced by E(2) to mediate endothelial repair are still poorly understood. METHODS AND RESULTS: We show here that after endovascular carotid artery injury, E(2)-enhanced endothelial repair is lost in osteopontin-deficient mice (OPN(-/-)). Transplantation of OPN(-/-) bone marrow into wild-type lethally irradiated mice, and vice versa, suggested that osteopontin plays a crucial role in both the local and the bone marrow actions of E(2). In the vascular compartment, using transgenic mice expressing doxycyclin regulatable-osteopontin, we show that endothelial cell specific osteopontin overexpression mimics E(2)-enhanced endothelial cell migration and proliferation in the regenerating endothelium. In the bone marrow cell compartment, we demonstrate that E(2) enhances bone marrow-derived mononuclear cell adhesion to regenerating endothelium in vivo, and that this effect is dependent on osteopontin. CONCLUSIONS: We demonstrate here that E(2) acceleration of the endothelial repair requires osteopontin, both for bone marrow-derived cell recruitment and for endothelial cell migration and proliferation.
Resumo:
OBJECTIVE: Cathepsin W (CatW, lymphopain) is a putative cysteine protease with restricted expression to natural killer (NK) cells and CD8(+) T cells and so far unknown function and properties. Here, we characterize in detail, the regulation of human CatW during T-cell development in response to different stimuli and its functional involvement in cytotoxic lymphocyte effector function. MATERIALS AND METHODS: Western blots and real time polymerase chain reaction of sorted, unstimulated, and stimulated cell subsets (thymocytes, T cells, NK cells) and their culture supernatants were used to study regulation and expression of CatW. Primary CD8(+) T cells and short-term T-cell lines were transfected with small interfering RNA to study the involvement of CatW in effector function such as target cell killing and interferon-gamma production. RESULTS: Levels of CatW expression correlate closely with cytotoxic capacity both during development and in response to factors influencing cytotoxicity. Furthermore, CatW is secreted during specific target cell killing. However, knockdown of CatW expression by small interfering RNA neither influences target cell killing nor interferon-gamma production. CONCLUSION: Despite being expressed in the effector subset of CD8(+) and NK cells and of being released during target cell killing, our functional inhibition studies exclude an essential role of CatW in the process of cytotoxicity.