995 resultados para Bulk metallic glasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studied the plastic deformation behaviour of bulk metallic glasses by conducting indentations on various thermal histories using bonded interface technique. Another effort was to probe the route to fabricate bulk amorphous alloy via consolidating amorphous powder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-speed imaging directly correlates the propagation of a particular shear band with mechanical measurements during uniaxial compression of a bulk metallic glass. Imaging shows shear occurs simultaneously over the entire shear plane, and load data, synced and time-stamped to the same clock as the camera, reveal that shear sliding is coincident with the load drop of each serration. Digital image correlation agrees with these results. These data demonstrate that shear band sliding occurs with velocities on the order of millimeters per second. Fracture occurs much more rapidly than the shear banding events, thereby readily leading to melting on fracture surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the fusible tin coating method to detect shear band heating in amorphous Zr57Ti5Cu20Ni8Al10 loaded under quasi-static uniaxial compression. High-rate load data allowed a precise determination of the duration of shearing events and final fracture. When loading was halted prior to fracture we saw no evidence of melted tin despite the presence of shear offsets up to 6μm on some shear bands. Samples loaded to fracture showed evidence of tin melting near the fracture surface. We attribute the difference to the duration of the events, which is much longer for shear banding (milliseconds) than for fracture (microseconds).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superplastic deformation behavior and superplastic forming ability of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) in the supercooled liquid region were investigated. The isothermal tensile results indicate (hat the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at hiqh-strain rates in the initial deformation stage. The maximum elongation reaches as high as 1624% at 656 K. and nanocrystallization was found to occur during the deformation process. Based cm the analysis on tensile deformation. a gear-like micropart is successfully die-forged via a superplastic forgings process. demonstrating that the BMG has excellent workability in the supercooled liquid region. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of imposed strain on the room temperature time-dependent deformation behavior of bulk metallic glasses (BMGs) was systematically investigated through spherical nanoindentation creep experiments. The results show that creep occurred even at very low strains within elastic regimes and, interestingly, a precipitous increase in creep rate was found in plastic regimes, with BMG that had a higher free volume exhibiting greater creep rates. The results are discussed in terms of prevailing mechanisms of elastic/plastic deformation of amorphous alloys. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a comparative study of shear banding in BMGs resulting from thermal softening and free volume creation. Firstly, the effects of thermal softening and free volume creation on shear instability are discussed. It is known that thermal softening governs thermal shear banding, hence it is essentially energy related. However, compound free volume creation is the key factor to the other instability, though void-induced softening seems to be the counterpart of thermal softening. So, the driving force for shear instability owing to free volume creation is very different from the thermally assisted one. In particular, long wave perturbations are always unstable owing to compound free volume creation. Therefore, the shear instability resulting from coupled compound free volume creation and thermal softening may start more like that due to free volume creation. Also, the compound free volume creation implies a specific and intrinsic characteristic growth time of shear instability. Finally, the mature shear band width is governed by the corresponding diffusions (thermal or void diffusion) within the band. As a rough guide, the dimensionless numbers: Thermal softening related number B, Deborah number (denoting the relation of instability growth rate owing to compound free volume and loading time) and Lewis number (denoting the competition of different diffusions) show us their relative importance of thermal softening and free volume creation in shear banding. All these results are of particular significance in understanding the mechanism of shear banding in bulk metallic glasses (BMGs).