891 resultados para Buildings -- Energy consumption
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
The purpose of this master’s thesis was to develop a method to be used in the selection of an optimal energy system for buildings and districts. The term optimal energy system was defined as the energy system which best fulfils the requirements of the stakeholder on whose preferences the energy systems are evaluated. The most influential stakeholder in the process of selecting an energy system was considered to be the district developer. The selection method consisted of several steps: Definition of the district, calculating the energy consumption of the district and buildings within the district, defining suitable energy system alternatives for the district, definition of the comparing criteria, calculating the parameters of the comparing criteria for each energy system alternative and finally using a multi-criteria decision method to rank the alternatives. For the purposes of the selection method, the factors affecting the energy consumption of buildings and districts and technologies enabling the use of renewable energy were reviewed. The key element of the selection method was a multi-criteria decision making method, PROMETHEE II. In order to compare the energy system alternatives with the developed method, the comparing criteria were defined in the study. The criteria included costs, environmental impacts and technological and technical characteristics of the energy systems. Each criterion was given an importance, based on a questionnaire which was sent for the steering groups of two district development projects. The selection method was applied in two case study analyses. The results indicate that the selection method provides a viable and easy way to provide the decision makers alternatives and recommendations regarding the selection of an energy system. Since the comparison is carried out by changing the alternatives into numeric form, the presented selection method was found to exclude any unjustified preferences over certain energy systems alternatives which would affect the selection.
Resumo:
Lighting and small power will typically account for more than half of the total electricity consumption in an office building. Significant variations in electricity used by different tenants suggest that occupants can have a significant impact on the electricity demand for these end-uses. Yet current modelling techniques fail to represent the interaction between occupant and the building environment in a realistic manner. Understanding the impact of such behaviours is crucial to improve the methodology behind current energy modelling techniques, aiming to minimise the significant gap between predicted and in-use performance of buildings. A better understanding of the impact of occupant behaviour on electricity consumption can also inform appropriate energy saving strategies focused on behavioural change. This paper reports on a study aiming to assess the intent of occupants to switch off lighting and appliances when not in use in office buildings. Based on the Theory of Planned Behaviour, the assessment takes the form of a questionnaire and investigates three predictors to behaviour individually: 1) behavioural attitude; 2) subjective norms; 3) perceived behavioural control. The paper details the development of the assessment procedure and discusses preliminary findings from the study. The questionnaire results are compared against electricity consumption data for individual zones within a multi-tenanted office building. Initial results demonstrate a statistically significant correlation between perceived behavioural control and energy consumption for lighting and small power
Resumo:
It is widely accepted that there is a gap between design energy and real world operational energy consumption. The behaviour of occupants is often cited as an important factor influencing building energy performance. However, its consideration, both during design and operation, is overly simplistic, often assuming a direct link between attitudes and behaviour. Alternative models of decision making from psychology highlight a range of additional influential factors and emphasise that occupants do not always act in a rational manner. Developing a better understanding of occupant decision making could help inform office energy conservation campaigns as well as models of behaviour employed during the design process. This paper assesses the contribution of various behavioural constructs on small power consumption in offices. The method is based upon the Theory of Planned Behaviour (TPB) which assumes that intention is driven by three factors: attitude, subjective norms, and perceived behavioural control, but we also consider a fourth construct: habit measured through the Self- Report Habit Index (SRHI). A questionnaire was issued to 81 participants in two UK offices. Questionnaire results for each behavioural construct were correlated against each participant’s individual workstation electricity consumption. The intentional processes proposed by TPB could not account for the observed differences in occupants’ interactions with small power appliances. Instead, occupants were interacting with small power “automatically”, with habit accounting for 11% of the variation in workstation energy consumption. The implications for occupant behaviour models and employee engagement campaigns are discussed.
Resumo:
The intensification of the Urban Heat Island effect (UHI) is a problem that involves several fields, and new adequate solutions are required to mitigate its amplitude. The construction sector is strictly related with this phenomenon; in particular, roofs are the envelope components subject to the highest solar irradiance, hence any mitigation strategy should start from them and involve their appropriate design process. For this purpose, cool materials, i.e. materials which are able to reflect a large amount of solar radiation and avoid overheating of building surfaces have been deeply analyzed in the last years both at building and urban scales, showing their benefits especially in hot climates. However, green roofs also represent a possible way to cope with UHI, even if their design is not straightforward and requires taking into account many variables, strictly related with the local climatic conditions. In this context, the present paper proposes a comparison between cool roofs and green roofs for several Italian cities that are representative of different climatic conditions. In search of the most effective solution, the answers may be different depending on the perspective that leads the comparison, i.e. the need to reduce the energy consumption in buildings or the desire to minimize the contribution of the UHI effect.
Resumo:
This paper presents a study on reduction of energy consumption in buildings through behaviour change informed by wireless monitoring systems for energy, environmental conditions and people positions. A key part to the Wi-Be system is the ability to accurately attribute energy usage behaviour to individuals, so they can be targeted with specific feedback tailored to their preferences. The use of wireless technologies for indoor positioning was investigated to ascertain the difficulties in deployment and potential benefits. The research to date has demonstrated the effectiveness of highly disaggregated personal-level data for developing insights into people’s energy behaviour and identifying significant energy saving opportunities (up to 77% in specific areas). Behavioural research addressed social issues such as privacy, which could affect the deployment of the system. Radio-frequency research into less intrusive technologies indicates that received-signal-strength-indicator-based systems should be able to detect the presence of a human body, though further work would be needed in both social and engineering areas.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
In recent years, advanced metering infrastructure (AMI) has been the main research focus due to the traditional power grid has been restricted to meet development requirements. There has been an ongoing effort to increase the number of AMI devices that provide real-time data readings to improve system observability. Deployed AMI across distribution secondary networks provides load and consumption information for individual households which can improve grid management. Significant upgrade costs associated with retrofitting existing meters with network-capable sensing can be made more economical by using image processing methods to extract usage information from images of the existing meters. This thesis presents a new solution that uses online data exchange of power consumption information to a cloud server without modifying the existing electromechanical analog meters. In this framework, application of a systematic approach to extract energy data from images replaces the manual reading process. One case study illustrates the digital imaging approach is compared to the averages determined by visual readings over a one-month period.
Resumo:
The building sector is well known to be one of the key energy consumers worldwide. The renovation of existing buildings provides excellent opportunities for an effective reduction of energy consumption and greenhouse gas emissions but it is essential to identify the optimal strategies. In this paper a multi-criteria methodology is proposed for the comparative analysis of retrofitting solutions. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) are combined by expressing environmental impacts in monetary values. A Pareto optimization is used to select the preferred strategies. The methodology is exemplified by a case study: the renovation of a representative housing block from the 1960s located in Madrid. Eight scenarios have been proposed, from the Business as Usual scenario (BAU), through Spanish Building Regulation requirements (for new buildings) up to the Passive House standard. Results show how current renovation strategies that are being applied in Madrid are far from being optimal solutions. The required additional investment, which is needed to obtain an overall performance improvement of the envelope compared with the common practice to date, is relatively low (8%) considering the obtained life cycle environmental and financial savings (43% and 45%, respectively).
Resumo:
EXECUTIVE SUMMARY All observers agree that energy efficiency must be the cornerstone of any serious EU energy strategy. In this general context, the EU building sector is critical. It represents about 40% of EU final energy consumption (residential houses, public/private offices, commercial buildings, etc.) and approximately 36% of EU CO2 emissions. This is massive. The EU has certainly not been inactive in this field. The Energy Performance in Buildings Directive 2002/91/EC (EPBD) was the first and the main instrument to address the problem of the energy performance of buildings. It has established numerous principles: a reliable methodology which enables the calculation and rating of the energy performance of buildings; minimum energy performance standards for new buildings and existing buildings under major renovation; energy performance certificates; regular inspection of heating and air-conditioning systems; and, finally, quality standards for inspections and energy performance certificates. They were strengthened in 2010 by the recast Directive 2010/31/EU. This directive also introduces a decisive concept for the development of the building sector: ‘nearly zeroenergy buildings’. In 2012, the new Energy Efficiency Directive 2012/27/EU dealt with other aspects. In the building sector, three of them are particularly important. They concern: (1) the establishment of long-term strategies for mobilizing investment in the renovation of the national building stocks; (2) the introduction of energy saving schemes for ‘designated’ energy companies with a view to reducing consumption among ‘final consumers’ by 1.5% annually; and (3), as an option, the setting up of an Energy Efficiency National Fund to support energy efficiency initiatives. This paper also briefly examines the different instruments put in place to disseminate information and consultation, and the EU funding for energy efficiency in buildings. Results, however, have remained limited until now. The improvement of the energy performance of buildings and the rhythm of renovation remain extremely weak. Member States’ unwillingness to timely and properly transpose and implement the Directives continues despite the high degree of flexibility permitted. The decentralized approach chosen for some specific aspects and the differentiation in the application of EPBD standards between Member States do not appear optimal either. Adequate financial schemes remain rare. The permanent deficit of qualified and trained personnel and the inertia of public authorities to make the public understand the stakes in this domain remain problematic. Hence the need to take new initiatives to reap the benefits that the building sector is meant to bring.
Resumo:
Background The improvement of energy efficiency in buildings is widely promoted as a measure to mitigate climate change through the reduction of CO2 emissions. Thermal regulations worldwide promote it, for both new and existing buildings. Among the existing stock, traditional and historic buildings pose the additional challenge of heritage conservation. Their energy efficiency upgrade raises the risk of provoking negative impacts on their significance. Aims and Methodology This research used an approach based on impact assessment methodologies, defining an inital baseline scenario for both heritage and energy, from which the appropriate improvement solutions were identified and assessed. The measures were dynamically simulated and the results for energy, CO2, cost and comfort compared with the initial scenario, and then being further assessed for their heritage impact to eventually determine the most feasible solutions. To test this method, ten case studies, representative of the identified typological variants, were selected among Oporto’s traditional buildings located in the World Heritage Site. Findings and Conclusions The fieldwork data revealed that the energy consumption of these dwellings was below the European average. Additionally, the households expressed that their home comfort sensation was overall positive. The simulations showed that the introduction of insulation and solar thermal panels were ineffective on these cases in terms of energy, cost and comfort. At the same time, these measures pose a great risk to the buildings heritage value. The most efficient solutions were obtained from behavioural changes and DHW retrofit. The study reinforced the idea that traditional buildings performed better than expected and can be retrofitted and updated at a low-cost and with passive solutions. The use of insulation and solar panels should be disregarded.
Resumo:
GEA Consulting Engineers, acting as the design engineers, was hired by the owner, East Village 207 Residential LLC2 for energy modeling for compliance with LEED NC V3 -- This report details the results of the energy simulation done with the 100% construction documents -- This report only refers to entities within the LEED3 project boundary -- The project consists of a new eight-story high-end residential condominium building with 81 units, as shown in illustration 1, and approximately 117,905 GSF, equivalent to 10,953.73 m2, is located at 211 E 13th Street in New York, NY -- The residential portion of the building will function 24-7 -- The design goal is to utilize energy efficient measures to reduce electrical energy use and aims to achieve LEED certification -- LEED EA Credit 14 requires a building to demonstrate a percentage improvement in the proposed building performance compared with the baseline building -- The Credit rewards 1 point for achieving 12% reduction in energy costs -- Additionally, the Credit rewards another point for each subsequent reduction of 2% in the building’s energy cost
Resumo:
The European program HORIZON2020 aims to have 20% of electricity produced by renewable sources. The building sector represents 40% of the European Union energy consumption. Reducing energy consumption in buildings is therefore a priority for energy efficiency. The present investigation explores the most adequate roof shapes compatible with the placement of different types of small wind energy generators on high-rise buildings for urban wind energy exploitation. The wind flow around traditional state-of-the-art roof shapes is considered. In addition, the influence of the roof edge on the wind flow on high-rise buildings is analyzed. These geometries are investigated, both qualitatively and quantitatively, and the turbulence intensity threshold for horizontal axis wind turbines is considered. The most adequate shapes for wind energy exploitation are identified, studying vertical profiles of velocity, turbulent kinetic energy and turbulence intensity. Curved shapes are the most interesting building roof shapes from the wind energy exploitation point of view, leading to the highest speed-up and the lowest turbulence intensity.
Resumo:
Atualmente, o parque edificado é responsável pelo consumo de 40% da energia total consumida em toda a União Europeia. As previsões apontam para o crescimento do sector da construção civil, nomeadamente a construção de edifícios, o que permite perspetivar um aumento do consumo de energia nesta área. Medidas importantes, como o lançamento da Diretiva 2010/31/EU do Parlamento Europeu e do Conselho de 19 de Maio de 2010 relativa ao desempenho energético dos edifícios, abrem caminho para a diminuição das necessidades energéticas e emissões de gases de efeito de estufa. Nela são apontados objetivos para aumentar a eficiência energética do parque edificado, tendo como objetivo que a partir de 2020 todos os novos edifícios sejam energeticamente eficientes e de balanço energético quase zero, com principal destaque para a compensação usando produção energética própria proveniente de fontes renováveis. Este novo requisito, denominado nearly zero energy building, apresenta-se como um novo incentivo no caminho para a sustentabilidade energética. As técnicas e tecnologias usadas na conceção dos edifícios terão um impacto positivo na análise de ciclo de vida, nomeadamente na minimização do impacto ambiental e na racionalização do consumo energético. Desta forma, pretendeu-se analisar a aplicabilidade do conceito nearly zero energy building a um grande edifício de serviços e o seu impacto em termos de ciclo de vida a 50 anos. Partindo da análise de alguns estudos sobre o consumo energético e sobre edifícios de balanço energético quase nulo já construídos em Portugal, desenvolveu-se uma análise de ciclo de vida para o caso de um edifício de serviços, da qual resultou um conjunto de propostas de otimização da sua eficiência energética e de captação de energias renováveis. As medidas apresentadas foram avaliadas com o auxílio de diferentes aplicações como DIALux, IES VE e o PVsyst, com o objetivo de verificar o seu impacto através da comparação com estado inicial de consumo energético do edifício. Nas condições iniciais, o resultado da análise de ciclo de vida do edifício a 50 anos no que respeita ao consumo energético e respetivas emissões de CO2 na fase de operação foi de 6 MWh/m2 e 1,62 t/m2, respetivamente. Com aplicação de medidas propostas de otimização, o consumo e as respetivas emissões de CO2 foram reduzidas para 5,2 MWh/m2 e 1,37 t/m2 respetivamente. Embora se tenha conseguido reduzir ao consumo com as medidas propostas de otimização de energia, chegou-se à conclusão que o sistema fotovoltaico dimensionado para fornecer energia ao edifício não consegue satisfazer as necessidades energéticas do edifício no final dos 50 anos.