143 resultados para Bryozoan Bugula-neritina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian southern continental margin is the world’s largest site of cool-water carbonate deposition, and the Great Australian Bight is its largest sector. The Eyre Peninsula is fringed by coastal beaches with aeolianites and marks the eastern edge of the Great Australian Bight. Five shoreline transects of varying lengths spanned a 150km longitudinal distance and at each the intertidal, beach, dune and secondary dune environments were sampled, for a total of 18 samples. Sediments are a mixture of modern, relict, and Cenozoic carbonates, and quartz grains. Carbonate aeolianites on the western Eyre Peninsula are mostly composed of modern carbonate grains: predominantly molluscs (23-33%) and benthic foraminifera (10-26%), locally abundant coralline algae (3-28%), echinoids (2-22%), and bryozoans (2-14%). Cenozoic grain abundance ranges from 1-6% whereas relict grain abundance ranges from 0-17%. A southward increase in bryozoan particles correlates with a nutrient element abundance and decrease in temperature due to a large seasonal coastal upwelling system that drives 2-3 major upwelling events per year, bringing cold, nutrient rich, Sub-Antarctic Surface Water (<12°C) onto the shelf. In southern, mostly wind protected locations, the beach and dune sediment compositions are similar, indicating that wind energy has successfully carried all sediment components of the beach into the adjacent dunes. In northern, exposed locations, the composition is not the same everywhere, and trends indicate that relative wind energy has the ability to impact grain composition through preferential wind transport. Aeolianite composition is therefore a function of both upwelling and the degree of coastal exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 78 bryozoan species collected by the German R/V "Polarstern" during the LAMPOS cruise in April 2002, encompassing the Scotia Arc archipelagos between Tierra del Fuego and the Antarctic Peninsula, were studied to discern the biogeographical patterns of the Magellan region of South America, the Scotia Arc archipelagos and the Antarctic. The resulting dendrogram shows three clusters: an isolated one with the three easternmost archipelagos and the other two linking some of the northern and southern Scotia Arc archipelagos with Tierra del Fuego. A more comprehensive analysis using all the species previously recorded from the Scotia Arc archipelagos and adjacent areas (214 spp.) produced a clearer zoogeographical pattern without isolated clusters of localities. The Antarctic Peninsula plus the Scotia Arc archipelagos form a large cluster distinct from the Magellan-Falkland Subantarctic area. A third analysis making use of 78 genera present in the study area plus Australia and New Zealand reinforces this pattern, showing two clusters: one uniting South America and the Australian-New Zealand realm and the other linking the Scotia Arc archipelagos with the Antarctic Peninsula. These results indicate that the Scotia Arc archipelagos represent merely a very narrow bridge connecting two different bryozoan faunas with only a few bryozoan species in common between the study areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distinct facies types, classified in radiocarbon-dated sediments from the shelf of the Lazarev Sea, East Antarctica, reveal a detailed history of processes that have controlled sedimentation during the deglaciation over the last 10,000 yr. The ice retreat on this part of the Antarctic shelf started 9500 yr BP, marked by the deposition of laminated sediments, deposited from a floating ice shelf. These laminites, which occur on top of diamictons laid down from a grounded ice sheet, are the basal sediments of the postglacial sequence. The intensity of the Antarctic Coastal Current (ACC), directed by shelf morphology, controlled sedimentation of the postglacial facies. A residual glaciomarine sediment with the fine fraction winnowed by strong currents developed from 9000-8000 yr BP in the western part of the investigation area and from 9000-5000 yr BP in the eastern part, closer to the prominent 'Fenno Deep' trough. Current velocities apparently decreased between 8000 and 2000 yr BP due to a deflection of the ACC by advancing ice tongues to the east of the investigation area during the 'Hypsithermal'. This led to a deposition of fine-grained sediments, and clay mineralogy suggests a continental source, possibly near the grounding line of the Nivl Ice Shelf, rather than a winnowing of sediments near the shelf break or advection from deeper water. Current velocities intensified after 2000 yr BP, removed fine material from these sediments and led to a relict sediment, consisting of coarse bryozoan and molluscan debris.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithofacies distribution indicates that the Much Wenlock Limestone Formation of England and South Wales was desposited on a shelf which was flat and gently subsiding in the north, but topographically variable in the south. Limestone deposition in the north began with 12m of alga-rich limestone, which formed an upward shoaling sequence. Deepening then led to deposition of calcareous silty mudstones on the northern shelf. The remainder of the formation in this area formed during a shelf-wide regression, culminating in the production of an E to W younging sandbody. Lithofacies distribution on the southern shelf was primarily controlled by local subsidence. Six bedded lithofacies are recognised which contain 14 brachiopod/bryozoan dominated assemblages, of which 11 are in situ and three consist of reworked fossils. Microfacies analysis is necessary to distinguish assemblages which reflect original communities from those which reflect sedimentary processes. Turbulence, substrate-type, ease of feeding and other organisms in the environment controlled faunal distribution. Reefs were built dominantly by corals, stromatoporoids, algae and crinoids. Coral/stromatoporoid (Type A) reefs are common, particularly on the northern shelf, where they formed in response to shallowing, ultimately growing in front of the advancing carbonate sandbody. Algae dominate Type B and Type C reefs, reflecting growth in areas of poor water circulation. Lithification of the formation began in the marine-phreatic environment with precipitation of aragonite and high Mg calcite, which was subsequently altered to turbid low Mg calcite. Younger clear spars post-date secondary void formation. The pre-compactional clear spars have features which resemble the products of meteoric water diagenesis, but freshwater did not enter the formation at this time. The pre-compactional spars were precipitated by waters forced from the surrounding silty mudstones at shallow burial depths. Late diagenetic products are stylolites, compaction fractures and burial cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.