890 resultados para Broken Promises


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral component of pelagic sediments recovered from the Indian Ocean provides both a history of eolian deposition related to climatic changes in southern Africa and a record of terrigenous input related to sediment delivery from the Himalayas. A composite Cenozoic dust flux record from four sites in the central Indian Ocean is used to define the evolution of the Kalahari and Namib desert source regions. The overall record of dust input is one of very low flux for much of the Cenozoic indicating a long history of climate stability and regional hyperaridity. The most significant reduction in dust flux occurred near the Paleocene/Eocene boundary and is interpreted as a shift from semiarid climates during the Paleocene to more arid conditions in the early Eocene. Further aridification is recorded as stepwise reductions in the input of dust material which occur from about 35 to 40 Ma, 27 to 32 Ma, and 13 to 15 Ma and correlate to significant enrichments in benthic foraminifer delta18O values. The mineral flux in sediments from the northern Indian Ocean, site 758, records changes in the terrigenous input apparently related to the erosion of the Himalayas and indicates a rapid late Cenozoic uplift history. Three major pulses of increased terrigeneous sediment flux are inferred from the depositional record. The initial increase began at about 9.5 Ma and continued for roughly 1.0 million years. A second pulse with approximately the same magnitude occurred from about 7.0 to 5.6 Ma. The largest pulse of enhanced terrigenous influx occurred during the Pliocene from about 3.9 to 2.0 Ma when average flux values were severalfold greater than at any other time in the Cenozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Ocean Drilling Program Sites 752 and 754, located on Broken Ridge in the eastern Indian Ocean, we recovered a sequence of shallow-water pelagic sediments that span the past 90 m.y. The Oligocene to Pleistocene portion of these sediments are unconsolidated carbonate oozes that display a coherent variation in bulk grain size. We believe these sediments to be winnowed, and suggest that their grain size is a measure of that winnowing energy. The largest increase in grain size, interpreted to represent an enhancement in the energy of ocean currents, occurs in the earliest late Miocene. This increase occurs about 20 m upcore from the oxygen isotope indication of ice-volume increase about 13 Ma, and is about 3 m.y. younger. If this distinct temporal separation between proxy indicators of ice volume and of current intensity observed in the Broken Ridge cores is correct, the general impression of paleoclimatologists that the planetary temperature gradient and therefore atmospheric and oceanic circulation intensity varies directly with ice volume needs to be reconsidered.