978 resultados para Brain oscillations
Resumo:
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.
Resumo:
Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.
Resumo:
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.
Resumo:
BACKGROUND Traumatic brain injury (TBI) is associated with mo st trauma-related deaths. Secondary brain injury is the leading cause of in-hospital deaths after traumatic brain injury. By early prevention and slowing of the initial pathophysiological mechanism of secondary brain injury, pre- hospital service can signifi cantly reduce case-fata lity rates of TBI. In China, the incidence of TBI is increasing and the proportion of severe TBI is much higher than that in other countries. The objective of this paper is to review the pre-hospital management of TBI in China. DATA SOURCES A literature search was conducted in January 2014 using the China National Knowledge Infrastructure (CNKI). Articles on the assessment and treatment of TBI in pre-hospital settings practiced by Chinese doctors were identified. The information on the assessment and treatment of hypoxemia, hypotension, and brain hern iation was extracted from the identifi ed articles. RESULTS Of the 471 articles identified, 65 met the selecti on criteria. The existing literature indicated that current practices of pre-hospital TBI management in China were sub-optimal and varied considerably across different regions. CONCLUSION Since pre-hospital care is the weakest part of Chinese emergency care, appropriate training programs on pre-hospital TBI management are urgently needed in China.
Resumo:
This thesis is a cross-sectional questionnaire survey of pre-hospital doctors' knowledge and practice of managing traumatic brain injury in two major cities of Hubei province, China. This study provides evidence for future research on improving the quality of pre-hospital management in China.
Resumo:
Sleep disturbance after mild traumatic brain injury (mTBI) is commonly reported as debilitating and persistent. However, the nature of this disturbance is poorly understood. This study sought to characterize sleep after mTBI compared with a control group. A cross-sectional matched case control design was used. Thirty-three persons with recent mTBI (1–6 months ago) and 33 age, sex, and ethnicity matched controls completed established questionnaires of sleep quality, quantity, timing, and sleep-related daytime impairment. The mTBI participants were compared with an independent sample of close-matched controls (CMCs; n=33) to allow partial internal replication. Compared with controls, persons with mTBI reported significantly greater sleep disturbance, more severe insomnia symptoms, a longer duration of wake after sleep onset, and greater sleep-related impairment (all medium to large effects, Cohen's d>0.5). No differences were found in sleep quantity, timing, sleep onset latency, sleep efficiency, or daytime sleepiness. All findings except a measure of sleep timing (i.e., sleep midpoint) were replicated for CMCs. These results indicate a difference in the magnitude and nature of perceived sleep disturbance after mTBI compared with controls, where persons with mTBI report poorer sleep quality and greater sleep-related impairment. Sleep quantity and timing did not differ between the groups. These preliminary findings should guide the provision of clearer advice to patients about the aspects of their sleep that may change after mTBI and could inform treatment selection.
Resumo:
In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.
Resumo:
Stress and abnormal hypothalamic-pituitary-adrenal axis functioning have been implicated in the early phase of psychosis and may partly explain reported changes in brain structure. This study used magnetic resonance imaging to investigate whether biological measures of stress were related to brain structure at baseline and to structural changes over the first 12 weeks of treatment in first episode patients (n=22) compared with matched healthy controls (n=22). At baseline, no significant group differences in biological measures of stress, cortical thickness or hippocampal volume were observed, but a significantly stronger relationship between baseline levels of cortisol and smaller white matter volumes of the cuneus and anterior cingulate was found in patients compared with controls. Over the first 12 weeks of treatment, patients showed a significant reduction in thickness of the posterior cingulate compared with controls. Patients also showed a significant positive relationship between baseline cortisol and increases in hippocampal volume over time, suggestive of brain swelling in association with psychotic exacerbation, while no such relationship was observed in controls. The current findings provide some support for the involvement of stress mechanisms in the pathophysiology of early psychosis, but the changes are subtle and warrant further investigation.
Resumo:
Brain cells control everything we do - from speaking to walking to breathing. The brain needs a steady supply of blood and oxygen to function properly. Without this vital steady supply of blood, brain cells don't get enough nutrients and oxygen to do their job, and a stroke or 'brain attack' occurs. The human brain is divided into regions that control various motor (movement) and sensory (the senses) functions. Damage from stroke to a specific region may affect the functions it controls. This causes symptoms such as paralysis (loss of movement), difficulty speaking, or loss of coordination. The left side of the brain controls motor and sensory functions on the right side of the body. The left side is also responsible for scientific functions, understanding written and spoken language, number skills and reasoning. The right side of the brain controls motor and sensory functions on the left side of the body. It also controls artistic functions, such as music, art awareness, and insight. If an artery inside the brain or leading to the brain becomes temporarily blocked, the flow of blood to an area of the brain slows or stops. The lack of blood can cause temporary symptoms such as weakness, numbness, problems with speech, dizziness, or loss of vision.
Resumo:
Before tissue plasminogen activator (tPA) was licensed for use in Canada, in February 1999, the Calgary Regional Stroke Program spearheaded the development and organization of local resources to use thrombolytic therapy in patients who had experienced acute ischemic stroke. In 1996 special permission was obtained from the Calgary Regional Health Authority to use intravenously administered tPA for acute ischemic stroke, and ethical and scientific review boards approved the protocols. After 3 years our efforts have resulted in improved patient outcomes, shorter times from symptom onset to treatment and acceptable adverse event rates. Areas for continued improvement include the door-to-needle time and broader education of the public about the symptoms of acute ischemic stroke.
Resumo:
What helps us determine whether a word is a noun or a verb, without conscious awareness? We report on cues in the way individual English words are spelled, and, for the first time, identify their neural correlates via functional magnetic resonance imaging (fMRI). We used a lexical decision task with trisyllabic nouns and verbs containing orthographic cues that are either consistent or inconsistent with the spelling patterns of words from that grammatical category. Significant linear increases in response times and error rates were observed as orthography became less consistent, paralleled by significant linear decreases in blood oxygen level dependent (BOLD) signal in the left supramarginal gyrus of the left inferior parietal lobule, a brain region implicated in visual word recognition. A similar pattern was observed in the left superior parietal lobule. These findings align with an emergentist view of grammatical category processing which results from sensitivity to multiple probabilistic cues.