956 resultados para Brain ischemia and reperfusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4±2.3 to 5.4±2.9 mmol/L), pyruvate (126.9±65.1 to 172.3±74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27±6 to 35±9; all, p<0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r=0.56; p<0.0001), while an inverse correlation (r=-0.11; p=0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r=0.62 to r=0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CA1 region of the hippocampus is particularly vulnerable to ischemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca2+ -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a) which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischemic neuronal death and to physiologically induced LTP. This raises the question - does ASIC1a activation drive the post-ischemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPN) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positive and negative reinforcing systems are part of the mechanism of drug dependence. Drugs with abuse potential may change the manner of response to negative emotional stimuli, activate positive emotional reactions and possess primary reinforcing properties. Catecholaminergic and peptidergic processes are of importance in these mechanisms. Current research needs to understand the types of adaptations that underlie the particularly long-lived aspects of addiction. Presently, glutamate is candidate to play a role in the enduring effects of drugs of abuse. For example, it participates in the chronic pathological changes of corticostriatal terminals produced by methamphetamine. At the synaptic level, a link between over-activation of glutamate receptors, [C(a2+)](i) increase and neuronal damage has been clearly established leading to neurodegeneration. Thus, neurodegeneration can start after an acute over-stimulation whose immediate effects depend on a diversity of calcium-activated mechanisms. If sufficient, the initial insult results in calcification and activation of a chronic on-going process with a progressive loss of neurons. At present, long-term effects of drug dependence underlie an excitotoxicity process linked to a polysynaptic pathway that dynamically regulates synaptic glutamate. Retaliatory mechanisms include energy capability of the neurons, inhibitory systems and cytoplasmic calcium precipitation as part of the neuron-glia interactions. This paper presents an integrated view of these molecular and cellular mechanisms to help understand their relationship and interdependence in a chronic pathological process that suggest new targets for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human altruism shaped our evolutionary history and pervades social and political life. There are, however, enormous individual differences in altruism. Some people are almost completely selfish, while others display strong altruism, and the factors behind this heterogeneity are only poorly understood. We examine the neuroanatomical basis of these differences with voxel-based morphometry and show that gray matter (GM) volume in the right temporoparietal junction (TPJ) is strongly associated with both individuals' altruism and the individual-specific conditions under which this brain region is recruited during altruistic decision making. Thus, individual differences in GM volume in TPJ not only translate into individual differences in the general propensity to behave altruistically, but they also create a link between brain structure and brain function by indicating the conditions under which individuals are likely to recruit this region when they face a conflict between altruistic and selfish acts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Question Paired-pulse TMS (Transcranial Magnetic Stimulation) paradigms allow explore motor cortex physiology. The Triple Stimulation Technique (TST) improves conventional TMS in quantifying cortico-spinal conduction. The objective of our study was to compare both methods in paired-pulse paradigms of inhibition and of facilitation. Method We investigated paired pulse paradigms of 2 ms (short intra-cortical inhibition) and of 10 ms intervals (intra cortical facilitation) in a randomized order in 22 healthy subjects applying conventional TMS and the TST protocol. Results Paired-pulse paradigms by both TMS and the TST yielded comparable results of short intra- cortical inhibition and intra cortical facilitation. However, the coefficient of variation was significantly smaller for SICI paradigm using TST. Conclusion These results suggest no greater sensitivity of the TST for quantifying inhibition and facilitation. The utility of TST to better quantify the individual amount of inhibition in SICI paradigms and its clinical utility need further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibrinolytic therapy with Recombinant Tissue-Plasminogen Activator (rt-PA) is currently the only effective treatment for ischaemic stroke in its acute phase. Even though its use generally improves the prognosis of those patients likely to receive it, rt-PA administration is associated to several risks, such as haemorrhagic transformation ofthe ischaemic lesion and activation of excitotoxic mechanisms that may contribute to an increase in mortality or to a poor outcome in certain occasions, specially when arterial recanalization is not achieved or the rt-PA is lately administrated. Since in the last few years the role of glutamate in the neurotoxicity associated toischaemia has been widely studied and it is known that high plasma glutamate levels are predictors of ischaemic lesion growth and poor neurological outcome, it is necessary to find out which factors can contribute to glutamate release in the brain. The aim of this study is to determine if rt-PA administration is related to an increase in plasma glutamate levels, as well as to define if higher plasma glutamate levels at admission are related to different evolution and prognosis of our patients, both in those in which recanalisation is achieved and not. A series of cases of patients with hemispheric cerebral infarction admitted in our hospital during a year will be studied, and the data obtained from them will be compared to the data obtained from a control group, the samples of wich were takenyears ago, before rt-PA was routinely used

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of dopamine and serotonin in spinal pain regulation is well established. However, little is known concerning the role of brain dopamine and serotonin in the perception of pain in humans. The aim of this study was to assess the potential role of brain dopamine and serotonin in determining experimental pain sensitivity in humans using positron emission tomography (PET) and psychophysical methods. A total of 39 healthy subjects participated in the study, and PET imaging was performed to assess brain dopamine D2/D3 and serotonin 5-HT1A receptor availability. In a separate session, sensitivity to pain and touch was assessed with traditional psychophysical methods, allowing the evaluation of potential associations between D2/D3 and 5-HT1A binding and psychophysical responses. The subjects’ responses were also analyzed according to Signal Detection Theory, which enables separate assessment of the subject’s discriminative capacity (sensory factor) and response criterion (non-sensory factor). The study found that the D2/D3 receptor binding in the right putamen was inversely correlated with pain threshold and response criterion. 5-HT1A binding in cingulate cortex, inferior temporal gyrus and medial prefrontal cortex was inversely correlated with discriminative capacity for touch. Additionally, the response criterion for pain and intensity rating of suprathreshold pain were inversely correlated with 5-HT1A binding in multiple brain areas. The results suggest that brain D2/D3 receptors and 5-HT1A receptors modulate sensitivity to pain and that the pain modulatory effects may, at least partly, be attributed to influences on the response criterion. 5-HT1A receptors are also involved in the regulation of touch by having an effect on discriminative capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of behavior in evolution remains controversial, despite that some ideas are over 100 years old. Changes in behavior are generally believed to enhance evolution by exposing individuals to new selective pressures and by facilitating range expansions. However, this hypothesis lacks firm empirical evidence. Moreover, behavioral changes can also inhibit evolution by hiding heritable variation from natural selection. Taking advantage of the complete phylogeny of extant birds, a new species-level measure of past diversification rate and the best existing measures of brain size (n = 1326 species), I show here that relative brain size is associated (albeit weakly) with diversification rates. Assuming that brain relative size reflects behavioral flexibility, an assumption well-supported by evidence, this finding supports the idea that behavior can enhance evolutionary diversification. This view is further supported by the discovery that the most important factor influencing diversification rates is ecological generalism, which is believed to require behavioral flexibility. Thus, behavioral changes that expose animals to a variety of environments can have played an important role in the evolution of birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathological gambling, a form of behavioral addiction, refers to maladaptive, compulsive gambling behavior severely interfering with an individual’s normal life. The prevalence of pathological gambling has been estimated to be 1–2% in western societies. The reward deficiency hypothesis of addiction assumes that individuals that have, or are prone, to addictions have blunted mesolimbic dopamine reward signaling, which leads to compulsive reward seeking in an attempt to compensate for the malfunctioning brain reward network. In this research project, the effects of gambling were measured using brain [11C] raclopride PET during slot machine gambling and possible brain structural changes associated with pathological gambling using MRI. The subjects included pathological gamblers and healthy volunteers. In addition, impulse control disorders associated with Parkinson’s disease were investigated by using brain [18F]fluorodopa PET and conducting an epidemiological survey. The results demonstrate mesolimbic dopamine release during gambling in both pathological gamblers and healthy volunteers. Striatal dopamine was released irrespective of the gambling outcome, whether the subjects won or not. There was no difference in gambling induced dopamine release between pathological gamblers and control subjects, although the magnitude of the dopamine release correlated with gambling related symptom severity in pathological gamblers. The results also show that pathological gambling is associated with extensive abnormality of brain white matter integrity, as measured with diffusion tensor imaging, similar to substance-addictions. In Parkinson’s disease patients with impulse control disorders, enhanced brain [18F] fluorodopa uptake in the medial orbitofrontal cortex was observed, indicating increased presynaptic monoamine function in this region, which is known to influence signaling in the mesolimbic system and reward processing. Finally, a large epidemiological survey in Finnish Parkinson’s disease patients showed that compulsive behaviors are very common in Parkinson disease and they are strongly associated with depression. These findings demonstrate the role of dopamine in pathological gambling, without support for the concept of reward deficiency syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present study was to evaluate the diagnostic value (clinical application) of brain measures and cognitive function. Alzheimer and multiinfarct patients (N = 30) and normal subjects over the age of 50 (N = 40) were submitted to a medical, neurological and cognitive investigation. The cognitive tests applied were Mini-Mental, word span, digit span, logical memory, spatial recognition span, Boston naming test, praxis, and calculation tests. The brain ratios calculated were the ventricle-brain, bifrontal, bicaudate, third ventricle, and suprasellar cistern measures. These data were obtained from a brain computer tomography scan, and the cutoff values from receiver operating characteristic curves. We analyzed the diagnostic parameters provided by these ratios and compared them to those obtained by cognitive evaluation. The sensitivity and specificity of cognitive tests were higher than brain measures, although dementia patients presented higher ratios, showing poorer cognitive performances than normal individuals. Normal controls over the age of 70 presented higher measures than younger groups, but similar cognitive performance. We found diffuse losses of tissue from the central nervous system related to distribution of cerebrospinal fluid in dementia patients. The likelihood of case identification by functional impairment was higher than when changes of the structure of the central nervous system were used. Cognitive evaluation still seems to be the best method to screen individuals from the community, especially for developing countries, where the cost of brain imaging precludes its use for screening and initial assessment of dementia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms underlying risk associated with hypertensive heart disease (HHD) and left ventricular hypertrophy (LVH) are discussed in this report and provide a rationale for understanding this very common and important cause of death from hypertension and its complications. Emphasized are impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis from increased collagen deposition intramurally and perivascularly. Each is exacerbated by aging and, perhaps, also by increased dietary salt intake. These functional and structural changes promote further endothelial dysfunction, altered coronary hemodynamics, and diastolic as well as systolic ventricular contractile function in HHD. The clinical endpoints of HHD include angina pectoris (with or without atherosclerosis of the epicardial coronary arteries), myocardial infarction, cardiac failure, lethal dysrhythmias, and sudden death. The major concept to be derived from these alterations is that not all that is clinically recognized as LVH is true myocytic hypertrophy and structural remodeling. Other major co-morbid changes occur that serve to increase cardiovascular risk including impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the topology of cortical visuotopic maps in adult primates is reviewed, with emphasis on recent studies. The observed visuotopic organisation can be summarised with reference to two basic rules. First, adjacent radial columns in the cortex represent partially overlapping regions of the visual field, irrespective of whether these columns are part of the same or different cortical areas. This primary rule is seldom, if ever, violated. Second, adjacent regions of the visual field tend to be represented in adjacent radial columns of a same area. This rule is not as rigid as the first, as many cortical areas form discontinuous, second-order representations of the visual field. A developmental model based on these physiological observations, and on comparative studies of cortical organisation, is then proposed, in order to explain how a combination of molecular specification steps and activity-driven processes can generate the variety of visuotopic organisations observed in adult cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated kidney and lung alterations caused by intercellular adhesion molecule type 1 (ICAM-1) blockade after ischemia and reperfusion of hind limb skeletal muscles. Rats were submitted to ligature of the infrarenal aorta for 6 h. The animals were randomized into three groups of 6 rats each: group I, sacrificed after ischemia; group II, reperfusion for 24 h, and group III, reperfusion for 24 h after receiving monoclonal anti-ICAM-1 antibodies. At the end of the experiment, blood samples were collected for creatinine, lactate dehydrogenase, creatine phosphokinase, potassium, pH and leukocyte counts. Samples were taken from the muscles of the hind limbs and from the kidneys and lungs for histological analysis and measurement of the neutrophil infiltrate by myeloperoxidase staining. The groups did not differ significantly with regard to the laboratory tests. There were no major histological alterations in the kidneys. An intense neutrophil infiltrate in the lungs, similar in all groups, was detected. Myeloperoxidase determination showed that after reperfusion there was significantly less retention of polymorphonuclear neutrophils in the muscles (352 ± 70 vs 1451 ± 235 × 10² neutrophils/mg; P<0.01) and in the kidneys (526 ± 89 vs 852 ± 73 × 10² neutrophils/mg; P<0.01) of the animals that received anti-ICAM-1 before perfusion compared to the group that did not. The use of anti-ICAM-1 antibodies in this experimental model minimized neutrophil influx, thus reducing the inflammatory process, in the muscles and kidneys after ischemia and reperfusion of the hind limbs.