912 resultados para Brain energy metabolism


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of creatine supplementation (CrS) on sprint exercise performance and skeletal muscle anaerobic metabolism during and after sprint exercise. Eight active, untrained men performed a 20-s maximal sprint on an air-braked cycle ergometer after 5 days of CrS [30 g creatine (Cr) + 30 g dextrose per day] or placebo (30 g dextrose per day). The trials were separated by 4 wk, and a double-blind crossover design was used. Muscle and blood samples were obtained at rest, immediately after exercise, and after 2 min of passive recovery. CrS increased the muscle total Cr content (9.5 ± 2.0%, P < 0.05, mean ± SE); however, 20-s sprint performance was not improved by CrS. Similarly, the magnitude of the degradation or accumulation of muscle (e.g., adenine nucleotides, phosphocreatine, inosine 5′-monophosphate, lactate, and glycogen) and plasma metabolites (e.g., lactate, hypoxanthine, and ammonia/ammonium) were also unaffected by CrS during exercise or recovery. These data demonstrated that CrS increased muscle total Cr content, but the increase did not induce an improved sprint exercise performance or alterations in anaerobic muscle metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From data in the literature, an allometric equation is compiled for hatchling resting metabolic rate and an attempt is made to explain residual variation in terms of hatchling type, yolk and water content, embryonic and postnatal growth rate, and environmental circumstances (latitudinal distribution). The body mass exponent for resting metabolism in hatchlings was 0.86 and, thus, substantially different from the values compiled for adult birds (0.67-0.75). Relatively high hatchling metabolic rates were found for birds exhibiting high embryonic and postnatal growth rates, as well as for those species that hatched at high latitudes. A functional explanation is postulated for the correlations between hatchling metabolism and these three variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vanadium compounds mimic most of the metabolic effects of insulin, suggesting that it might be useful to improve utilization of dietary carbohydrate. This work evaluated the effect of dietary ammonium metavanadate (H(4)NO(3)V) on the growth performance and energy metabolism of pacu, an omnivorous South America characin. Two hundred and eighty-eight fish were distributed into four blocks according to the body weight (21.8 +/- 1.7, 28.5 +/- 2.0, 28.4 +/- 1.9, 35.7 +/- 1.9 g), stocked in 24 plastic tanks and fed twice daily with isonitrogenous and isoenergetic diets containing six levels of H(4)NO(3)V (0, 10, 50, 100, 300 and 1000 mg kg(-1)) for 60 days. Increasing levels of dietary ammonium metavanadate did not improve growth (P > 0.05), and the highest level of inclusion (1000 mg kg(-1)) reduced performance (P < 0.05). Blood glucose levels decreased (P < 0.05) in fish fed 300 and 1000 mg kg(-1) H(4)NO(3)V, but no differences were observed in other blood metabolites. A slight increase in muscle lipid content was observed in fish fed a diet containing 300 mg kg(-1) H(4)NO(3)V. Based on the results of this study, there is no benefit in supplementing pacu diets with metavanadate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to evaluate the effect of energy intake and broiler genotype on performance, carcass yield, and fat deposition, 600 one-day-old male chicks from two different genetic groups (AgRoss 308 - commercial line and PCLC - Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) non-improved line) were fed diets with different metabolizable energy level (2950, 3200 and 3450 kcal/kg). A completely randomized experimental design in a 2X3 factorial arrangement with four replications of 25 birds per treatment was applied. In order to ensure different energy intake among treatments within each strain, feed intake was daily adjusted by pair-feeding schemes. AgRoss 308 broilers had better performance and carcass yield, and presented lower abdominal fat deposition rate. In both genetic groups, the highest dietary energy level increased weight gain, heart relative weight, and fat deposition. However, it reduced the difference between AgRoss 308 and PCLC for feed conversion ratio and carcass protein deposition. These findings allow concluding that genetic improvement had a significant effect on broiler energy metabolism, and that the highest performance differences between genetic groups are found when low-energy intake is imposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The factorial approach has been used to partition the energy requirements into maintenance, growth, and production. The coefficients determined for these purposes can be used to elaborate energy requirement models. These models consider the body weight, weight gain, egg production, and environmental temperature to determine the energy requirements for poultry. Predicting daily energy requirement models can help to establish better and more profitable feeding programs for poultry. Studies were conducted at UNESP-Jaboticabal to determine metabolizable energy (ME) requirement models for broiler breeders, laying hens, and broilers. These models were evaluated in performance trials and provided good adjustments. Therefore, they could be used to establish nutritional programs. This review aims to outline the results found at UNESP studies and to show the application of models in nutritional programs for broiler breeders, laying hens, and broilers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A carnitina, uma amina quaternária (3-hidroxi-4-N-trimetilamino-butirato), é sintetizada no organismo (fígado, rins e cérebro) a partir de dois aminoácidos essenciais: lisina e metionina, exigindo para sua síntese a presença de ferro, ácido ascórbico, niacina e vitamina B6. Tem função fundamental na geração de energia pela célula, pois age nas reações transferidoras de ácidos graxos livres do citosol para mitocôndrias, facilitando sua oxidação e geração de adenosina Trifosfato. A concentração orgânica de carnitina é resultado de processos metabólicos - como ingestão, biossíntese, transporte dentro e fora dos tecidos e excreção - que, quando alterados em função de diversas doenças, levam a um estado carencial de carnitina com prejuízos relacionados ao metabolismo de lipídeos. A suplementação de L-carnitina pode aumentar o fluxo sangüíneo aos músculos devido também ao seu efeito vasodilatador e antioxidante, reduzindo algumas complicações de doenças isquêmicas, como a doença arterial coronariana, e as conseqüências da neuropatia diabética. Por esse motivo, o objetivo do presente trabalho foi descrever possíveis benefícios da suplementação de carnitina nos indivíduos com necessidades especiais e susceptíveis a carências de carnitina, como os portadores de doenças renais, neuropatia diabética, síndrome da imunodefeciência adquirida e doenças cardiovasculares.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several evidences point for beneficial effects of growth hormone (GH) in heart failure (HF). Taking into account that HF is related with changes in myocardial oxidative stress and in energy generation from metabolic pathways, it is important to clarify whether GH increase or decrease myocardial oxidative stress and what is its effect on energetic metabolism in HF condition. Thus, this study investigated the effects of two different doses of GH on energetic metabolism and oxidative stress in myocardium of rats with HF. Male Wistar rats (n = 25) were submitted to aortic stenosis (AS). The HF was evidenced by tachypnea and echocardiographic criteria around 28 weeks of AS. The rats were then randomly divided into three groups: (HF) with HF, treated with saline (0.9% NaCl); (HF-GHI), treated with 1 mk/kg/day recombinant human growth hormone (rhGH), and (HF-GH2) treated with 2 mg/kg/day rhGH. GH was injected, subcutaneously, daily for 2 weeks. A control group (sham; n = 12), with the same age of the others rats was evaluated to confirm data for AS. HF had lower IGF-I (insulin-like growth factor-I) than sham-operated rats, and both GH treatments normalized IGF-I level. HF-GH1 animals had lower lipid hydroperoxide (LH), LH/total antioxidant substances (TAS) and glutathione-reductase than HF. Glutathione peroxidase (GSH-Px), hydroxyacyl coenzyme-A dehydrogenase, lactate dehydrogenase(LDH) were higher in HF-GH1 than in HF. HF-GH2 compared with HF, had increased LH/TAS ratio, as well as decreased oxidized glutathione and LDH activity. Comparing the two GH doses, GSH-Px, superoxide dismutase and LDH were lower in HF-GH2 than in HF-GHI. In conclusion, GH effects were dose-dependent and both tested doses did not aggravate the heart dysfunction. The higher GH dose, 2 mg/kg exerted detrimental effects related to energy metabolism and oxidative stress. The lower dose, 1 mg/kg GH exerted beneficial effects enhancing antioxidant defences, reducing oxidative stress and improving energy generation in myocardium of rats with heart failure. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study cross-sectionally investigated the influence of training status, route difficulty and upper body aerobic and anaerobic performance of climbers on the energetics of indoor rock climbing. Six elite climbers (EC) and seven recreational climbers ( RC) were submitted to the following laboratory tests: ( a) anthropometry, (b) upper body aerobic power, and ( c) upper body Wingate test. on another occasion, EC subjects climbed an easy, a moderate, and a difficult route, whereas RC subjects climbed only the easy route. The fractions of the aerobic (WAER), anaerobic alactic (W-PCR) and anaerobic lactic (W-[La(])-) systems were calculated based on oxygen uptake, the fast component of excess post-exercise oxygen uptake, and changes in net blood lactate, respectively. on the easy route, the metabolic cost was significantly lower in EC [ 40.3 ( 6.5) kJ] than in RC [60.1 ( 8.8) kJ] ( P < 0.05). The respective contributions of the WAER, WPCR, and W-[La(])- systems in EC were: easy route = 41.5 (8.1), 41.1 (11.4) and 17.4% (5.4), moderate route = 45.8 (8.4), 34.6 (7.1) and 21.9% (6.3), and difficult route = 41.9 (7.4), 35.8 (6.7) and 22.3% (7.2). The contributions of the WAER, WPCR, and W-[La(])- systems in RC subjects climbing an easy route were 39.7 (5.0), 34.0 (5.8), and 26.3% (3.8), respectively. These results indicate that the main energy systems required during indoor rock climbing are the aerobic and anaerobic alactic systems. In addition, climbing economy seems to be more important for the performance of these athletes than improved energy metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Correspondendo a apenas 2% do peso corpóreo, o cérebro apresenta taxa metabólica superior à maioria dos demais órgãos e sistemas. A maior parte do consumo energético encefálico ocorre no transporte iônico para manutenção do potencial de membrana celular. Praticamente desprovido de estoques, os substratos energéticos para o encéfalo são fornecidos necessariamente pela circulação sanguínea.O suprimento desses substratos sofre também a ação seletiva da barreira hemato-encefálica (BHE). O principal substrato, que é a glicose, tem uma demanda de 150 g/dia (0,7 mM/g/min). A metabolização intracelular parece ser controlada pela fosfofrutoquinase. A manose e os produtos intermediários do metabolismo (frutose 1,6 bifosfato, piruvato, lactato e acetato) podem substituir, em parte, a glicose, quando os níveis sangüíneos desta encontram-se elevados. Quando oxidado, o lactato chega a responder por 21% do consumo cerebral de Ov em situações de isquemia e inflamação infecciosa, o tecido cerebral passa de consumidor a produtor de lactato. Os corpos cetônicos também podem reduzir as necessidades cerebrais de glicose desde que oferecidos em quantidades suficientes ao encéfalo. Entretanto, devem ser considerados como um substrato complementar e nunca alternativo da glicose, pois comprometem a produção cerebral de succinil CoA e GTP. Quanto aos demais substratos, embora apresentem condições metabólicas, não existem demonstrações consistentes de que o cérebro produza energia a partir dos ácidos graxos sistêmicos, mesmo em situações de hipoglicemia. de maneira análoga, etanol e glicerol são considerados apenas a nível de experimentação. A utilização dos aminoácidos é dependente da sua captação, limitada tanto pela baixa concentração sangüínea, como pela seletividade da BHE. A maior captação ocorre para os de cadeia ramificada e destes, a valina. A menor captação é a de aminoácidos sintetizados no cérebro (aspartato,gluconato e alanina). Todos podem ser oxidados a CO, e H(2)0. Entretanto, mesmo com o consumo de glicose reduzido a 50%, a contribuição energética dos aminoácidos não ultrapassa 10%. Para manter o suprimento adequado de glicose e oxigênio, o fluxo sangüíneo cerebral é da ordem de 800 ml/min (15% do débito cardíaco). O consumo de O, pelo cérebro é equivalente a 20% do total consumido pelo corpo. Esses mecanismos, descritos como controladores da utilização de substratos energéticos pelo cérebro, sofrem a influência da idade apenas no período perinatal, com a oxidação do lactato na fase pré-latente e dos corpos cetônicos, no início da amamentação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)