197 resultados para Bolaños
Resumo:
Este ensayo sintetiza varias aristas teóricas prácticas dirigidas a una de las decisiones personales más importantes en todo ser humano, el camino del autoconocimiento. Siempre y cuando se reflejen esas necesidades intrínsecas del ser, el hombre contemporáneo está descubriendo que en la satisfacción de los requerimientos materiales, finalmente no se encuentra ni la felicidad, ni la paz verdadera. En medio de este imaginario, el rol del Orientador está en su capacidad de guía fundamentado en unos principios y valores que garanticen que ese camino sea hallado, puesto que su gran compromiso consigo mismo y con los demás es precisamente acompañar en el descubrimiento de los talentos y potencialidades de ese sujeto para aprovechar su genialidad e innatas formas de normal crecimiento hacia la felicidad y armonía. Entre los caminos están los estudiados por un sinnúmero de teóricos expertos en la existencia humana como Ortega y Gasset, Sabater, Jung, Heidegger, Gadamer, Luckmann, Habermas, Bauman, Binswanger. Es un apasionante recorrido por estos análisis motivantes y sobre todo retadores.
Resumo:
In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure.
Resumo:
We have recently demonstrated a biosensor based on a lattice of SU8 pillars on a 1 μm SiO2/Si wafer by measuring vertically reflectivity as a function of wavelength. The biodetection has been proven with the combination of Bovine Serum Albumin (BSA) protein and its antibody (antiBSA). A BSA layer is attached to the pillars; the biorecognition of antiBSA involves a shift in the reflectivity curve, related with the concentration of antiBSA. A detection limit in the order of 2 ng/ml is achieved for a rhombic lattice of pillars with a lattice parameter (a) of 800 nm, a height (h) of 420 nm and a diameter(d) of 200 nm. These results correlate with calculations using 3D-finite difference time domain method. A 2D simplified model is proposed, consisting of a multilayer model where the pillars are turned into a 420 nm layer with an effective refractive index obtained by using Beam Propagation Method (BPM) algorithm. Results provided by this model are in good correlation with experimental data, reaching a reduction in time from one day to 15 minutes, giving a fast but accurate tool to optimize the design and maximizing sensitivity, and allows analyzing the influence of different variables (diameter, height and lattice parameter). Sensitivity is obtained for a variety of configurations, reaching a limit of detection under 1 ng/ml. Optimum design is not only chosen because of its sensitivity but also its feasibility, both from fabrication (limited by aspect ratio and proximity of the pillars) and fluidic point of view. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
El objetivo de la presente tesis doctoral es el desarrollo de un nuevo concepto de biosensor óptico sin marcado, basado en una combinación de técnicas de caracterización óptica de interrogación vertical y estructuras sub-micrométricas fabricadas sobre chips de silicio. Las características más importantes de dicho dispositivo son su simplicidad, tanto desde el punto de vista de medida óptica como de introducción de las muestras a medir en el área sensible, aspectos que suelen ser críticos en la mayoría de sensores encontrados en la literatura. Cada uno de los aspectos relacionados con el diseño de un biosensor, que son fundamentalmente cuatro (diseño fotónico, caracterización óptica, fabricación y fluídica/inmovilización química) son desarrollados en detalle en los capítulos correspondientes. En la primera parte de la tesis se hace una introducción al concepto de biosensor, en qué consiste, qué tipos hay y cuáles son los parámetros más comunes usados para cuantificar su comportamiento. Posteriormente se realiza un análisis del estado del arte en la materia, enfocado en particular en el área de biosensores ópticos sin marcado. Se introducen también cuáles son las reacciones bioquímicas a estudiar (inmunoensayos). En la segunda parte se describe en primer lugar cuáles son las técnicas ópticas empleadas en la caracterización: Reflectometría, Elipsometría y Espectrometría; además de los motivos que han llevado a su empleo. Posteriormente se introducen diversos diseños de las denominadas "celdas optofluídicas", que son los dispositivos en los que se va a producir la interacción bioquímica. Se presentan cuatro dispositivos diferentes, y junto con ellos, se proponen diversos métodos de cálculo teórico de la respuesta óptica esperada. Posteriormente se procede al cálculo de la sensibilidad esperada para cada una de las celdas, así como al análisis de los procesos de fabricación de cada una de ellas y su comportamiento fluídico. Una vez analizados todos los aspectos críticos del comportamiento del biosensor, se puede realizar un proceso de optimización de su diseño. Esto se realiza usando un modelo de cálculo simplificado (modelo 1.5-D) que permite la obtención de parámetros como la sensibilidad y el límite de detección de un gran número de dispositivos en un tiempo relativamente reducido. Para este proceso se escogen dos de las celdas optofluídicas propuestas. En la parte final de la tesis se muestran los resultados experimentales obtenidos. En primer lugar, se caracteriza una celda basada en agujeros sub-micrométricos como sensor de índice de refracción, usando para ello diferentes líquidos orgánicos; dichos resultados experimentales presentan una buena correlación con los cálculos teóricos previos, lo que permite validar el modelo conceptual presentado. Finalmente, se realiza un inmunoensayo químico sobre otra de las celdas propuestas (pilares nanométricos de polímero SU-8). Para ello se utiliza el inmunoensayo de albumina de suero bovino (BSA) y su anticuerpo (antiBSA). Se detalla el proceso de obtención de la celda, la funcionalización de la superficie con los bioreceptores (en este caso, BSA) y el proceso de biorreconocimiento. Este proceso permite dar una primera estimación de cuál es el límite de detección esperable para este tipo de sensores en un inmunoensayo estándar. En este caso, se alcanza un valor de 2.3 ng/mL, que es competitivo comparado con otros ensayos similares encontrados en la literatura. La principal conclusión de la tesis es que esta tipología de dispositivos puede ser usada como inmunosensor, y presenta ciertas ventajas respecto a los actualmente existentes. Estas ventajas vienen asociadas, de nuevo, a su simplicidad, tanto a la hora de medir ópticamente, como dentro del proceso de introducción de los bioanalitos en el área sensora (depositando simplemente una gota sobre la micro-nano-estructura). Los cálculos teorícos realizados en los procesos de optimización sugieren a su vez que el comportamiento del sensor, medido en magnitudes como límite de detección biológico puede ser ampliamente mejorado con una mayor compactación de pilares, alcanzandose un valor mínimo de 0.59 ng/mL). The objective of this thesis is to develop a new concept of optical label-free biosensor, based on a combination of vertical interrogation optical techniques and submicron structures fabricated over silicon chips. The most important features of this device are its simplicity, both from the point of view of optical measurement and regarding to the introduction of samples to be measured in the sensing area, which are often critical aspects in the majority of sensors found in the literature. Each of the aspects related to the design of biosensors, which are basically four (photonic design, optical characterization, fabrication and fluid / chemical immobilization) are developed in detail in the relevant chapters. The first part of the thesis consists of an introduction to the concept of biosensor: which elements consists of, existing types and the most common parameters used to quantify its behavior. Subsequently, an analysis of the state of the art in this area is presented, focusing in particular in the area of label free optical biosensors. What are also introduced to study biochemical reactions (immunoassays). The second part describes firstly the optical techniques used in the characterization: reflectometry, ellipsometry and spectrometry; in addition to the reasons that have led to their use. Subsequently several examples of the so-called "optofluidic cells" are introduced, which are the devices where the biochemical interactions take place. Four different devices are presented, and their optical response is calculated by using various methods. Then is exposed the calculation of the expected sensitivity for each of the cells, and the analysis of their fabrication processes and fluidic behavior at the sub-micrometric range. After analyzing all the critical aspects of the biosensor, it can be performed a process of optimization of a particular design. This is done using a simplified calculation model (1.5-D model calculation) that allows obtaining parameters such as sensitivity and the detection limit of a large number of devices in a relatively reduced time. For this process are chosen two different optofluidic cells, from the four previously proposed. The final part of the thesis is the exposition of the obtained experimental results. Firstly, a cell based sub-micrometric holes is characterized as refractive index sensor using different organic fluids, and such experimental results show a good correlation with previous theoretical calculations, allowing to validate the conceptual model presented. Finally, an immunoassay is performed on another typology of cell (SU-8 polymer pillars). This immunoassay uses bovine serum albumin (BSA) and its antibody (antiBSA). The processes for obtaining the cell surface functionalization with the bioreceptors (in this case, BSA) and the biorecognition (antiBSA) are detailed. This immunoassay can give a first estimation of which are the expected limit of detection values for this typology of sensors in a standard immunoassay. In this case, it reaches a value of 2.3 ng/mL, which is competitive with other similar assays found in the literature. The main conclusion of the thesis is that this type of device can be used as immunosensor, and has certain advantages over the existing ones. These advantages are associated again with its simplicity, by the simpler coupling of light and in the process of introduction of bioanalytes into the sensing areas (by depositing a droplet over the micro-nano-structure). Theoretical calculations made in optimizing processes suggest that the sensor Limit of detection can be greatly improved with higher compacting of the lattice of pillars, reaching a minimum value of 0.59 ng/mL).
Resumo:
In previous works we demonstrated the benefits of using micro–nano patterning materials to be used as bio-photonic sensing cells (BICELLs), referred as micro–nano photonic structures having immobilized bioreceptors on its surface with the capability of recognizing the molecular binding by optical transduction. Gestrinone/anti-gestrinone and BSA/anti-BSA pairs were proven under different optical configurations to experimentally validate the biosensing capability of these bio-sensitive photonic architectures. Moreover, Three-Dimensional Finite Difference Time Domain (FDTD) models were employed for simulating the optical response of these structures. For this article, we have developed an effective analytical simulation methodology capable of simulating complex biophotonic sensing architectures. This simulation method has been tested and compared with previous experimental results and FDTD models. Moreover, this effective simulation methodology can be used for efficiently design and optimize any structure as BICELL. In particular for this article, six different BICELL's types have been optimized. To carry out this optimization we have considered three figures of merit: optical sensitivity, Q-factor and signal amplitude. The final objective of this paper is not only validating a suitable and efficient optical simulation methodology but also demonstrating the capability of this method for analyzing the performance of a given number of BICELLs for label-free biosensing.
Resumo:
In this paper, label-free biosensing for antibody screening by periodic lattices of high-aspect ratio SU-8 nano-pillars (BICELLs) is presented. As a demonstration, the determination of anti-gestrinone antibodies from whole rabbit serum is carried out, and for the first time, the dissociation constant (KD = 6 nM) of antigen-antibody recognition process is calculated using this sensing system. After gestrinone antigen immobilization on the BICELLs, the immunorecognition was performed. The cells were interrogated vertically by using micron spot size Fourier transform visible and IR spectrometry (FT-VIS-IR), and the dip wavenumber shift was monitored. The biosensing assay exhibited good reproducibility and sensitivity (LOD = 0.75 ng/mL).
Resumo:
Label free immunoassay sector is a ferment of activity, experiencing rapid growth as new technologies come forward and achieve acceptance. The landscape is changing in a “bottom up” approach, as individual companies promote individual technologies and find a market for them. Therefore, each of the companies operating in the label-free immunoassay sector offers a technology that is in some way unique and proprietary. However, no many technologies based on Label-free technology are currently in the market for PoC and High Throughput Screening (HTS), where mature labeled technologies have taken the market.
Resumo:
The field of optical label free biosensors has become a topic of interest during past years, with devices based on the detection of angular or wavelength shift of optical modes [1]. Common parameters to characterize their performance are the Limit of Detection (LOD, defined as the minimum change of refractive index upon the sensing surface that the device is able to detect, and also BioLOD, which represents the minimum amount of target analyte accurately resolved by the system; with units of concentration (common un its are p pm, ng/ml, or nM). LOD gives a first value to compare different biosensors, and is obtained both theoretically (using photonic calculation tools), and experimentally,covering the sensing area with fluids of different refractive indexes.
Resumo:
Los sectores de detección biológica demandan continuamente técnicas de análisis y diagnóstico más eficientes y precisas para identificar enfermedades y desarrollar nuevos medicamentos. Actualmente se considera que hay una gran necesidad de desarrollar herramientas de diagnóstico capaces de asegurar sensibilidad, rapidez, sencillez y asequibilidad para aplicaciones en sectores como la salud, la alimentación, el medioambiente o la seguridad. En el ámbito clínico se necesitan profundos avances tecnológicos capaces de ofrecer análisis rápidos, exactos, fiables y asequibles en coste y que tengan como consecuencia la mejora clínica y económica a partir de un diagnóstico eficiente. En concreto, hay un interés creciente por la descentralización del diagnóstico clínico mediante plataformas de detección cercanas al usuario final, denominadas POCs (Point Of Care devices). La utilización de POCs (referidas al diagnóstico cercano al usuario final o fuera del laboratorio de análisis clínico), mediante detección in vitro (IVD), será extremadamente útil en centros de salud, clínicas o unidades hospitalarias, entornos laborales o incluso en el hogar. Por otra parte, el desarrollo de la genómica, proteómica y otras tecnologías conocidas como “omics” (sufijo en inglés para referirse, por ejemplo, a genomics, transcriptomics, proteomics, metabolomics, lipidomics) está incrementando la demanda de nuevas tecnologías mucho más avanzadas con una clara orientación hacia la medicina personalizada y la necesidad de hacer frente a cambios en los tratamientos en el caso de enfermedades complejas. Desde hace poco tiempo se han definido las Celdas Biofónicas (BICELLs) como una metodología novedosa para la detección de agentes biológicos que ofrecen una serie de características que las hacen interesantes como son: Capacidad de multiplexación, alta sensibilidad, posibilidad de medir en gota, compatible con otras tecnologías. En este trabajo se hace un estudio y optimización sobre diferentes tipos de BICELLs y se valoran una serie de figuras de merito a tener en cuenta desde el punto de vista del lector óptico a emplear.
Resumo:
El análisis del comportamiento de los modos de interferencia tiene una aplicación cada vez mas amplia, especialmente en el campo de los biosensores opticos. En este tipo de sensores se observa el desplazamiento Δν de los modos de interferencia de la señal de transducción al reconocer un determinado agente biologico. Para medir ese desplazamiento se debe detectar la posición de un máximo o minimo de la senal antes y después de dicho desplazamiento. En este tipo de biosensores un parámetro de gran importancia es el periodo Pν de la senal el cual es inversamente proporcional al espesor óptico h0 del sensor en ausencia de agente biologico. El aumento de dicho periodo mejora la sensibilidad del sensor pero parece dificultar la detección del minimo o maximo. Por tanto, su efecto sobre la incetidumbre del resultado de la medida presentados efectos contrapuestos: la mejora de la sensibilidad frente a la dificultad creciente en la detección del minimo o maximo. En este trabajo, los autores analizan la propagación de incertidumbres en estos sensores utilizando herramientas de ajuste por MM.CC. para la detección de los minimos o máximos de la senal y técnicas de propagación de incertidumbres descritas en los suplementos 2 de la Guia ISO-GUM. El resultado del análisis permite dar una respuesta, justificada desde el punto de vista metrologico, de en que condiciones es conveniente o no aumentar el periodo Pν de la senal.
Resumo:
We demonstrate the capability of a laser micromachining workstation for cost-effective manufacturing of a variety of microfluidic devices, including SU-8 microchannels on silicon wafers and 3D complex structures made on polyimide Kapton® or poly carbonate (PC). The workstation combines a KrF excimer laser at 248 nm and a Nd3+:YVO4 DPSS with a frequency tripled at 355 nm with a lens magnification 10X, both lasers working at a pulsed regime with nanoseconds (ns) pulse duration. Workstation also includes a high-resolution motorized XYZ-tilt axis (~ 1 um / axis) and a Through The Lens (TTL) imaging system for a high accurate positioning over a 120 x 120 mm working area. We have surveyed different fabrication techniques: direct writing lithography,mask manufacturing for contact lithography and polymer laser ablation for complex 3D devices, achieving width channels down to 13μ m on 50μ m SU-8 thickness using direct writing lithography, and width channels of 40 μm for polyimide on SiO2 plate. Finally, we have tested the use of some devices for capillary chips measuring the flow speed for liquids with different viscosities. As a result, we have characterized the presence of liquid in the channel by interferometric microscopy.
Resumo:
The use of Biophotonic Sensing Cells (BICELLs) based on micro-nano pattemed photonic architectures has been recently proven as an efficient methodology for label-free biosensing by using Optical Interrogation [1]. According to this, we have studied the different optical response for a specific typology of BICELL, consisting of structures of SU -8. This material is biocompatible with different types of biomolecules and can be immobilized on its sensing surface. In particular, we have measured the optical response for a biomarker in clinic diagnostic of dry eye. Although different proteins can be enstudied such as: PRDX5, ANXA 1, ANXA 11, CST 4, PLAA Y S 1 OOA6 related with ocular surface (dry eye), for this work PLAA (phospholipase A2) is studied by means of label free biosensing based on BICELLs for analyzing the performance and specificity according with means values of concentration in ROC curves.
Resumo:
Previous work of the research group [1-4] demonstrated the viability of using periodic lattices of micro and nanopillars, called Bio-photonic sensing Cells (BICELLs), as an optical biosensor vertically characterized by visible spectrometry. Also we have studied theoretically [5] the performance of the BICELLs by 2D and 3D simulation in orde r to optimize the biosensing response. In this work we present the fabrication and biosensing comparison of different geometrical parameters on periodic lattices of pillars in order to discuss theoretical conclusions with these results. In this way, we have explored the biosensing response of other patter ns such as crosses, stars, cylinders, concentrical cylinders (Figure 1). Also we introduced a novel method to test the BICELLs in a cost-effective way by using an ultra-thin film of SU-8 spin-coated onto the patterns to reproduce the effect of a biofilm attached to the biosensor surface. Finally we have tested the biosensing response of the different geometries by the well-known Bovine Serum Albumin (BSA) immunoassay and compared with the theoretical simulation.
Resumo:
The analysis of the interference modes has an increasing application, especially in the field of optical biosensors. In this type of sensors, the displacement Δν of the interference modes of the transduction signal is observed when a particular biological agent is placed over the biosensor. In order to measure this displacement, the position of a maximum (or a minimum) of the signal must be detected before and after placing the agent over the sensor. A parameter of great importance for this kind of sensors is the period Pν of the signal, which is inversely proportional to the optical thickness h0 of the sensor in the absence of the biological agent. The increase of this period improves the sensitivity of the sensor but it worsens the detection of the maximum. In this paper, authors analyze the propagation of uncertainties in these sensors when using least squares techniques for the detection of the maxima (or minima) of the signal. Techniques described in supplement 2 of the ISO-GUM Guide are used. The result of the analysis allows a metrological educated answer to the question of which is the optimal period Pν of the signal. El análisis del comportamiento de los modos de interferencia tiene una aplicación cada vez más amplia, especialmente en el campo de los biosensores ópticos. En este tipo de sensores se observa el desplazamiento Δν de los modos de interferencia de la señal de transducción al reconocer un de-terminado agente biológico. Para medir ese desplazamiento se debe detectar la posición de un máximo o mínimo de la señal antes y después de dicho desplazamiento. En este tipo de biosensores un parámetro de gran importancia es el periodo Pν de la señal el cual es inversamente proporcional al espesor óptico h0 del sensor en ausencia de agente biológico. El aumento de dicho periodo mejora la sensibilidad del sensor pero parece dificultar la detección del mínimo o máximo. Por tanto, su efecto sobre la incertidumbre del resultado de la medida presenta dos efectos contrapuestos: la mejora de la sensibilidad frente a la dificultad creciente en la detección del mínimo ó máximo. En este trabajo, los autores analizan la propagación de incertidumbres en estos sensores utilizando herramientas de ajuste por MM.CC. para la detección de los mínimos o máximos de la señal y técnicas de propagación de incertidumbres descritas en el suplemento 2 de la Guía ISO-GUM. El resultado del análisis permite dar una respuesta, justificada desde el punto de vista metrológico, de en que condiciones es conveniente o no aumentar el periodo Pν de la señal.
Resumo:
The negative epoxy-based SU-8 photoresist has a wide variety of applications within the semiconductor industry, photonics and lab-on-a-chip devices, and it is emerging as an alternative to silicon-based devices for sensing purposes. In the present work, biotinylation of the SU-8 polymer surface promoted by light is reported. As a result, a novel, efective, and low-cost material, focusing on the immobilization of bioreceptors and consequent biosensing, is developed. This material allows the spatial discrimination depending on the irradiation of desired areas. The most salient feature is that the photobiotin may be directly incorporated into the SU-8 curing process, consequently reducing time and cost. The potential use of this substrate is demonstrated by the immunoanalytical detection of the synthetic steroid gestrinone, showing excellent performances. Moreover, the naked eye biodetection due to the transparent SU-8 substrate, and simple instrumental quantication are additional advantages.