954 resultados para Bochner tensor
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.
Resumo:
A non-variational technique for computing the stress-energy tensor is presented. The prescription is used, among other things, to obtain the correct field equations for Prasanna's highly nonlinear electrodynamics.
Resumo:
The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.
Resumo:
We evaluate the one-loop vacuum polarization tensor for three-dimensional quantum electrodynamics (QED), using an analytic regularization technique, implemented in a gauge-invariant way. We show thus that a gauge boson mass is generated at this level of radiative correction to the photon propagator. We also point out in our conclusions that the generalization for the non Abelian case is straightforward.
Resumo:
We derive an one-parameter family of consistency conditions to braneworlds in the Brans-Dicke gravity. The General Relativity case is recovered by taking a correct limit of the Brans-Dicke parameter. We show that it is possible to build a multiple AdS brane scenario in a six-dimensional bulk only if the brane tensions are negative. Besides, in the five-dimensional case, it is showed that no fine tuning is necessary between the bulk cosmological constant and the brane tensions, in contrast to the Randall-Sundrum model. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.
Resumo:
We investigate the effects of light-cone fluctuations over the renormalized vacuum expectation value of the stress-energy tensor of a real massless minimally coupled scalar field defined in a (d+1)-dimensional flat space-time with topology R×Td. For modeling the influence of light-cone fluctuations over the quantum field, we consider a random Klein-Gordon equation. We study the case of centered Gaussian processes. After taking into account all the realizations of the random processes, we present the correction caused by random fluctuations. The averaged renormalized vacuum expectation value of the stress-energy associated with the scalar field is presented. © 2013 World Scientific Publishing Company.
Resumo:
Here we obtain all possible second-order theories for a rank-2 tensor which describe a massive spin-2 particle. We start with a general second-order Lagrangian with ten real parameters. The absence of lower-spin modes and the existence of two local field redefinitions leads us to only one free parameter. The solutions are split into three one-parameter classes according to the local symmetries of the massless limit. In the class which contains the usual massive Fierz-Pauli theory, the subset of spin-1 massless symmetries is maximal. In another class where the subset of spin-0 symmetries is maximal, the massless theory is invariant under Weyl transformations and the mass term does not need to fit into the form of the Fierz-Pauli mass term. In the remaining third class neither the spin-1 nor the spin-0 symmetry is maximal and we have a new family of spin-2 massive theories. © 2013 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
Programa doctorado: Cibernética y Telecomunicación (2002/2004)