950 resultados para Blue-green laser
Resumo:
Biological diversity of an ecosystem is considered a reliable measure of the state of health of the ecosystem. In Uganda's large lakes, the Victoria and Kyoga, the past three decades have been characterized by profound changes in fish species composition following the introduction of the piscivorous Nile perch (Oguto-Ohwayo 1990). Over 300 haplochromine cichlid species comprising a wide range of trophic groups were lost along with a host of non-cichlid fishes which occupied virtually all available ecological niches and in the lakes (Witte 1992). A second major ecological event has been the gradual nutrient enrichment of the water bodies (eutrophication) from diffuse and point sources, while at the same time pollutants have also gained entrance into the water systems in pace with indusfrial development and human population increases in the lake basins. Eutrophication and pollution have drastically altered the physical and-chemical character of the water medium in which different fauna and flora thrive. In Lake Victoria these alterations have resulted in changes of algal species composition from pristine community dominated by chlorophytes and diatoms (Melosira etc) to one composed largely of blue-green algae or Cyanobacteria (Microcystis, Anabaena, Planktolyngbya etc) (Mugidde 1993, Hecky 1993).
Resumo:
The government of the People's Republic of China through a 2007 agreement with the Government of the Republic of Uganda, has establishment of an Agricultural Technology Demonstration Center (ATDC). The first phase covering the building of aquaculture infrastructure at Kajjansi ARDC is complete and the second operation phase has started in which facilities for cage culture have been set up in the Napoleon gulf, northern Lake Victoria near Jinja. The cage facility is aimed at boosting fish farming within the lake as a diversification to the traditional pond fish culture technology. NaFIRRI scientists as well as Chinese experts undertook a baseline survey in the chosen cage site on 12 March 2012. The survey covered determination of water depth, water transparency, measurement of selected physical-chemical parameters (temperature,dissolved oxygen, conductivity and pH; determination of the nutrient status and study of algae, invertebrate and fish communities at the site. Materials and methodologies used in the survey were based on the Standard Operating Procedures (SOPs) of NaFIRRI. The study area was divided into three study sites. Site 1 (upstream) was at 8.9 metre depth while site 2 (proposed cage site) and site 3 (downstream) were 6 and 4.3 metres deep respectively. Water transparency was lowest at site 1 (1.58 m) and highest at site 3 (1.64 m). Dissolved oxygen at the three sites ranged from 6.0 to 8 mg/I. Water temperature profiles fluctuated within narrow limits between 26.5 and 27.5 DC. Measurements of pH were between 7 (neutral) and 8 (alkaline) while electrical conductivity was between 98 and 101 uS/em. These observed physical-chemical parameters at the study site were considered suitable for cage fish rearing purposes. Nitrite-nitrogen levels varied within narrow limits from 0.043 to 0.0453 mgtl. Similarly, Ammonia-nitrogen varied between 0.015 and 0.0185 mg/1. Soluble reactive phosphorus (SRP) level was highest at site 3 (O.012mgll) compared to that at sites 1 and 2 (0.009mgll). Total suspended solids (TSS) were higher at site 1 (83.3mgll), thereafter decreasing to lower levels at sites 2 (24.8mgtl) and 3 (19.8mgl) respectively. The nutrient level results observed here all fall below the maximum permissible limits by NEMA and therefore the site is recommended for cage culture The algal community was constituted by four major groups: Blue greens,Greens, Cryptophytes, and Diatoms with blue greens as the common and dominant group. High algal biomass (19944961 ugtL) of the dominant blue green algae was observed at site 1 compared site 2 and 3 (58655.2 & 27487. 7 ugtL) respectively. Occurrence of toxicin producing algae: microsytis and cylindrospermopsis in the proposed cage area was considered to be of not much significance as their concentrations were below harmful levels. However, monitoring their presence, biomass and seasonality will be critical in order to follow when and where they occur and at what time of the year for ease of management of the cages
Resumo:
In May, 1971, Lake Mahega had pronounced mesothermy (40.W C at one metre). Solar heating of a bloom of baeteria and the blue-green alga, Synechococcus bacillaris Butch., probably caused the high temperature. A total ionic concentration gradient increasing from 192,600 mg 1itre-1 at the surface to 415,200 mg•litre- 1 at three metres stabilized the thermally inverted water. Nearly equal amounts of chloride and sulphate accounted for about 90% of the anionic composition. Sodium was the major cation. Crystals or the triple salt, northupite (Na2 CO3. MgCO3. NaCl) and of thenardite (Na2SO4) were mixed with the surface sediment. We believe it is possible that primary northupite depnsition is occurring. Lake Mahega is also the first mesothermic, sulphato-chloride lake reported for East Africa.
Resumo:
The samples were collected from Lake Edward at Rwenshama, Kisenyi and Katwe, and from Lake George at Mahyoro, Kashaka and Kasenyi and in Kazinga Channel at Katunguru. The organisms identified from the water samples obtained irrespective of station or depth were mainly the phytoplankton (diatoms, blue-green algae and green algae). Of the phytoplankton, blue green-algae were the most abundant both in quantity and number of species especially in L. George. In order of importance were Microcystis spp, Planktolyngbya spp and Anabaenopsis spp were the dominant blue greens. Diatoms and green algae were present but less abundant. The estimated proportions of different types of phytoplankton identified in O. niloticus stomach contents indicate that bluegreen algae were the most abundant followed by the diatoms and green algae.
Resumo:
<正> 藻类细胞的溶解现象,无论在自然界或者实验室中早已引起人们的注意,但病毒性溶解因子直到1963年才首次在蓝藻中得到证实。十几年来,有关这类病毒的研究报告和综述已近200篇。在这些文献中采用了藻病毒(Phycoviruses),蓝藻病毒(Blue-green viruses,Cyanoviruses)、噬蓝藻体(Cyanophage)、噬藻体(Algophage)等名称。鉴于这类病毒与噬菌体之间若干相似性,同时在红藻、绿藻、褐藻和轮藻中也有类似病毒颗粒的报道,我们认为采用噬藻体为宜,它既反映了病毒本身
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
Gel filtration chromatography, ultra-filtration, and solid-phase extraction silica gel clean-up were evaluated for their ability to remove microcystins selectively from extracts of cyanobacteria Spirulina samples after using the reversed-phase octadecylsilyl ODS cartridge for subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The reversed-phase ODS cartridge/silica gel combination were effective and the optimal wash and elution conditions were: H2O (wash), 20% methanol in water (wash), and 90% methanol in water (elution) for the reversed-phase ODS cartridge, followed by 80% methanol in water elution in the silica gel cartridge. The presence of microcystins in 36 kinds of cyanobacteria Spirulina health food samples obtained from various retail outlets in China were detected by LC-MS/MS, and 34 samples (94%) contained microcystins ranging from 2 to 163 ng g(-1) (mean=1427 ng g(-1)), which were significantly lower than microcystins present in blue green alga products previously reported. MC-RR-which contains two molecules of arginine (R)-(in 94.4% samples) was the predominant microcystin, followed by MC-LR-where L is leucine-(30.6%) and MC-YR-where Y is tyrose-(27.8%). The possible potential health risks from chronic exposure to microcystins from contaminated cyanobacteria Spirulina health food should not be ignored, even if the toxin concentrations were low. The method presented herein is proposed to detect microcystins present in commercial cyanobacteria Spirulina samples.
Resumo:
Photosynthetic activity during rehydration at four temperatures (5, 15, 25, 35 degrees C) was studied in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc flagelliforme. At all the temperatures, the optimum quantum yield F-v/F-m increased rapidly within I It and then increased slowly during the process of rehydration. The increase in F-v/F-m at 25 and 35 degrees C was larger than that at 5 and 15 degrees C. In addition, the changes of initial intensity of fluorescence (F-0) and variable fluorescence (F-v) were more significant at 25 and 35 degrees C than those at 5 and 15 degrees C. Chlorophyll a content increased with the increase of temperature during the course of rehydration, with this being more pronounced at 25 and 35 degrees C. The photosynthetic rates at 25 and 35 degrees C were higher than those at 5 and 15 degrees C. Induction of chlorophyll fluorescence with sustained rewetting at 5 and 15 degrees C had two phases of transformation, whereas at 25 and 35 degrees C it had a third peak kinetic phase and showed typical chlorophyll fluorescence steps on rewetting for 24 h, representing a normal physiological state. A comparison of the chlorophyll fluorescence parameters, chlorophyll a content, and the chlorophyll fluorescence induction led to the conclusion that N. flagelliforme had a more rapid and complete recovery at 25 and 35 degrees C than that at 5 and 15 degrees C, although it could recover its photosynthetic activity at any of the four temperatures. (c) 2007 Published by Elsevier Ltd.
Resumo:
Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
About 50 species of Microcystis so far have been reported in the world, and 19 species were described in China. During our recent investigations for water-bloom forming blue-green algae in China, a diverse group of Microcystis species occurring in some waters can be easily observed. Among these species, some have never been described in China. The present paper reported three newly recorded species of Microcystis: M novacekii (Komdrek) Compere 1974, M smithii Komdrek & Anagnostidis 1995, and M botrys Teiling 1942.
Resumo:
C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including antiinflammatory and anti-tumor activities. In this study, we expressed the beta-subunit of C-PC (ref to as C-POP) in Escherichia coli. We found that the recombinant C-PC/beta has anti-cancer properties. Under the treatment of 5 mu M of the recombinant C-PC/beta, four different cancer cell lines accrued high proliferation inhibition and apoptotic induction. Substantially, a lower response occurred in non-cancer cells. We investigated the mechanism by which C-PC/beta inhibits cancer cell proliferation and induces apoptosis. We found that the C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Under the treatment of the C-PC/beta, depolymerization of microtubules and actin-filaments were observed. The cells underwent apoptosis with an increase in caspase-3, and caspase-8 activities. The cell cycle was arrested at the G0/G1 phase under the treatment of C-PC/beta. In addition, the nuclear level of GAPDH decreased significantly. Decrease in the nuclear level of GAPDH prevents the cell cycle from entering into the S phase. Inhibition of cancer cell proliferation and induction of apoptosis may potentate the C-POP as a promising cancer prevention or therapy agent. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In the desert areas of China investigated by the authors, various biological crusts were predominately associated with three blue-green algal (cyano bacterial) species, Microcoleus vaginatus Gom., Phormidium tenue (Menegh.) Gom. and Seytonema javanicum (Mitz.) Born et Flah. Their biomass and their compressive strength were measured simultaneously in the field in this study. It was also found that the compressive strength of algal crusts was enhanced with the increasing of algal biomass from an undetectable level to a value as high as 9.6mg g(-1) dry soil. However, when the algal biomass decreased, the compressive strength did not descend immediately, but remained relatively steady. The higher the algal biomass became, the thicker were the algal crusts formed. Given the same biomass, the highest compressive strength of man-made algal crusts in fields was found at an algal ratio of 62.5% M. vaginatus, 31.25% P. tenue and 6.25% S. javanicum, and it reached 0.89kgcm(-2). When the biomass of the crusts increased above the value of 8.16 mg chl ag(-1) dry soil, the compressive strength would not ascend easily. It indicated that the compressive strength of man-made algal crusts appeared temporarily saturated in the field. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.
Resumo:
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.