125 resultados para Bitectatodinium spongium
Resumo:
Marine sediments from the Vøring Plateau (Norwegian Sea) have been studied for their dinoflagellate cyst (dinocyst) and foraminiferal content in order to reconstruct sea-surface conditions in the eastern Norwegian Sea during Marine Isotope Stage (MIS) 5e. In combination with stable oxygen isotope and ice rafted detritus (IRD) data, the variations in foraminiferal and dinocyst assemblage composition reflect a stepwise transition from the final phase of deglaciation (Termination II) into typical interglacial conditions. This stepwise change is repeated subsequently during the cooling conditions of glacial inception towards MIS 5d. The interval studied is characterized by relatively high abundances of Bitectatodinium tepikiense, in comparison to present-day values in the area, indicating a larger seasonal temperature amplitude with enhanced surface water stratification during MIS 5e. The important occurrence of the warm-temperate dinocyst Spiniferites mirabilis s.l. concurrent with subpolar foraminifers Turborotalita quinqueloba, Globigerina bulloides, and Globigerinita glutinata reveals that most pronounced interglacial marine conditions prevailed in the area just prior to the transition towards MIS 5d. The late stratigraphic position of this phase in the interglacial is verified by comparison with dinocyst data from south of Iceland, manifesting its over-regional implication. Besides the good agreement in dinocyst and foraminiferal assemblage changes, the variations in and between both fossil assemblages also point to the existence of some significant surface water variability in the eastern Norwegian Sea during MIS 5e.
Resumo:
A palaeoceanographic reconstruction of the Late Quaternary tropical Atlantic Ocean has been made on the basis of dinoflagellate cyst associations of two sediment cores: the first core was recovered from below the highly productive waters of the equatorial divergence and the second from the oligotrophic western tropical Atlantic Ocean. Palaeoenvironmental indicators for productivity, sea surface temperature (SST) and salinity (SSS) based on selected organic-walled dinoflagellate cyst species have been established. On the basis of these palaeoenvironmental indicators, a strengthened intensity of the equatorial divergence in the eastern region during glacials and cold periods of interglacials has been reconstructed. The highest SST probably occurred around substage 5.5 and might refer to weakest upwelling intensity. In comparison, SST and SSS appear to have been generally higher in the western tropical Atlantic Ocean, with probably enhanced values during glacial intervals. Pronounced differences in accumulation rates and relative abundances of cysts formed by congruentidiacean dinoflagellates and relative abundances of oligotrophic cyst species between the eastern and the western region can be related to differences in palaeoproductivity, suggesting much higher values in the eastern area. The coherence between variation in frequency of the indicators for productivity and the boreal summer insolation and monsoon intensity in the eastern tropical Atlantic Ocean suggests an oceanographic reflection of regional intertropical, rather than boreal, dynamics.
Resumo:
The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a ~260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 (~2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.