846 resultados para Bit error rate
Resumo:
The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.
Resumo:
The UMTS turbo encoder is composed of parallel concatenation of two Recursive Systematic Convolutional (RSC) encoders which start and end at a known state. This trellis termination directly affects the performance of turbo codes. This paper presents performance analysis of multi-point trellis termination of turbo codes which is to terminate RSC encoders at more than one point of the current frame while keeping the interleaver length the same. For long interleaver lengths, this approach provides dividing a data frame into sub-frames which can be treated as independent blocks. A novel decoding architecture using multi-point trellis termination and collision-free interleavers is presented. Collision-free interleavers are used to solve memory collision problems encountered by parallel decoding of turbo codes. The proposed parallel decoding architecture reduces the decoding delay caused by the iterative nature and forward-backward metric computations of turbo decoding algorithms. Our simulations verified that this turbo encoding and decoding scheme shows Bit Error Rate (BER) performance very close to that of the UMTS turbo coding while providing almost %50 time saving for the 2-point termination and %80 time saving for the 5-point termination.
Resumo:
Turbo codes experience a significant decoding delay because of the iterative nature of the decoding algorithms, the high number of metric computations and the complexity added by the (de)interleaver. The extrinsic information is exchanged sequentially between two Soft-Input Soft-Output (SISO) decoders. Instead of this sequential process, a received frame can be divided into smaller windows to be processed in parallel. In this paper, a novel parallel processing methodology is proposed based on the previous parallel decoding techniques. A novel Contention-Free (CF) interleaver is proposed as part of the decoding architecture which allows using extrinsic Log-Likelihood Ratios (LLRs) immediately as a-priori LLRs to start the second half of the iterative turbo decoding. The simulation case studies performed in this paper show that our parallel decoding method can provide %80 time saving compared to the standard decoding and %30 time saving compared to the previous parallel decoding methods at the expense of 0.3 dB Bit Error Rate (BER) performance degradation.
Resumo:
This thesis has discussed the development of a new metal ion doped panchromatic photopolymer for various holographic applications. High-quality panchromatic holographic recording material with high diffraction efficiency, high photosensitivity and high spatial resolution is one of the key factors for the successful recording of true colour holograms. The capability of the developed material for multicolour holography can be investigated.In the present work, multiplexing studies were carried out using He-Ne laser (632.8 nm). Multiplexing can be done using low wavelength lasers like Ar+ ion (488 nm) and frequency doubled Nd: YAG (532 nm) lasers, so as to increase the storage capacity. The photopolymer film studied had a thickness of only 130 Cm. Films with high thickness (~500 Cm) is highly essential for competitive holographic memories . Hence films with high thickness can be fabricated and efforts can be made to record more holograms or gratings in the material.In the present study, attempts were made to record data page in silver doped MBPVA/AA photopolymer film. Image of a checkerboard pattern was recorded in the film, which could be reconstructed with good image fidelity. Efforts can be made to determine the bit error rate (BER) which provides a quantitative measure of the image quality of the reconstructed image . Multiple holographic data pages can also be recorded in the material making use of different multiplexing techniques.Holographic optical elements (HOEs) are widely used in optical sensors, optical information processing, fibre optics, optical scanners and solar concentrators . The suitability of the developed film for recording holographic optical elements like lenses, beam splitters and filters can be studied.The suitability of a reflection hologram recorded in acrylamide based photopolymer for visual indication of environmental humidity is reported . Studies can be done to optimize the film composition for recording of reflection holograms.An improvement in the spatial resolution of PVA/acrylamide based photopolymer by using a low molecular-weight poly (vinyl alcohol) binder was recently reported . Effect of the molecular weight of the binder matrix on the holographic properties of the developed photopolymer system can be investigated.Incorporation of nanoparticles into photopolymer system is reported to enhance the resolution and improve the dimensional stability of the system . Hence efforts can be made to incorporate silver nanoparticles into the photopolymer and its influence on the holographic properties can be studied.This thesis was a small venture towards the realization of a big goal, a competent holographic recording material with excellent properties for practical holographic applications. As a result of the present research, we could successfully develop an efficient panchromatic photopolymer system and could demonstrate its suitability for recording transmission holograms and holographic data page. The developed photopolymer system is expected to have significant applications in the fields of true-color display holography, wavelength multiplexing holographic storage, and holographic optical elements. Highly concentrated and determined effort has yet to be put forth for this expectation to become a reality.
Resumo:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.
Resumo:
A beamforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.
Resumo:
One of the enablers for new consumer electronics based products to be accepted in to the market is the availability of inexpensive, flexible and multi-standard chipsets and services. DVB-T, the principal standard for terrestrial broadcast of digital video in Europe, has been extremely successful in leading to governments reconsidering their targets for analogue television broadcast switch-off. To enable one further small step in creating increasingly cost effective chipsets, the ODFM deterministic equalizer has been presented before with its application to DVB-T. This paper discusses the test set-up of a DVB-T compliant baseband simulation that includes the deterministic equalizer and DVB-T standard propagation channels. This is then followed by a presentation of the found inner and outer Bit Error Rate (BER) results using various modulation levels, coding rates and propagation channels in order to ascertain the actual performance of the deterministic equalizer(1).
Resumo:
Little has so far been reported on the performance of the near-far resistant CDMA detectors in the presence of the synchronization errors. Starting with the general mathematical model of matched filters, this paper examines the effects of three classes of synchronization errors (i.e. time-delay errors, carrier phase errors, and carrier frequency errors) on the performance (bit error rate and near-far resistance) of an emerging type of near-far resistant coherent DS/SSMA detectors, i.e. the linear decorrelating detector (LDD). For comparison, the corresponding results for the conventional detector are also presented. It is shown that the LDD can still maintain a considerable performance advantage over the conventional detector even when some synchronization errors exist. Finally, several computer simulations are carried out to verify the theoretical conclusions.
Resumo:
The existing dual-rate blind linear detectors, which operate at either the low-rate (LR) or the high-rate (HR) mode, are not strictly blind at the HR mode and lack theoretical analysis. This paper proposes the subspace-based LR and HR blind linear detectors, i.e., bad decorrelating detectors (BDD) and blind MMSE detectors (BMMSED), for synchronous DS/CDMA systems. To detect an LR data bit at the HR mode, an effective weighting strategy is proposed. The theoretical analyses on the performance of the proposed detectors are carried out. It has been proved that the bit-error-rate of the LR-BDD is superior to that of the HR-BDD and the near-far resistance of the LR blind linear detectors outperforms that of its HR counterparts. The extension to asynchronous systems is also described. Simulation results show that the adaptive dual-rate BMMSED outperform the corresponding non-blind dual-rate decorrelators proposed by Saquib, Yates and Mandayam (see Wireless Personal Communications, vol. 9, p.197-216, 1998).
Resumo:
In 1997, the UK implemented the worlds first commercial digital terrestrial television system. Under the ETS 300 744 standard, the chosen modulation method, COFDM, is assumed to be multipath resilient. Previous work has shown that this is not necessarily the case. It has been shown that the local oscillator required for demodulation from intermediate-frequency to baseband must be very accurate. This paper shows that under multipath conditions, standard methods for obtaining local oscillator phase lock may not be adequate. This paper demonstrates a set of algorithms designed for use with a simple local oscillator circuit which will allow correction for local oscillator phase offset to maintain a low bit error rate with multipath present.
Resumo:
Single-carrier frequency division multiple access (SC-FDMA) has appeared to be a promising technique for high data rate uplink communications. Aimed at SC-FDMA applications, a cyclic prefixed version of the offset quadrature amplitude modulation based OFDM (OQAM-OFDM) is first proposed in this paper. We show that cyclic prefixed OQAMOFDM CP-OQAM-OFDM) can be realized within the framework of the standard OFDM system, and perfect recovery condition in the ideal channel is derived. We then apply CP-OQAMOFDM to SC-FDMA transmission in frequency selective fading channels. Signal model and joint widely linear minimum mean square error (WLMMSE) equalization using a prior information with low complexity are developed. Compared with the existing DFTS-OFDM based SC-FDMA, the proposed SC-FDMA can significantly reduce envelope fluctuation (EF) of the transmitted signal while maintaining the bandwidth efficiency. The inherent structure of CP-OQAM-OFDM enables low-complexity joint equalization in the frequency domain to combat both the multiple access interference and the intersymbol interference. The joint WLMMSE equalization using a prior information guarantees optimal MMSE performance and supports Turbo receiver for improved bit error rate (BER) performance. Simulation resultsconfirm the effectiveness of the proposed SC-FDMA in termsof EF (including peak-to-average power ratio, instantaneous-toaverage power ratio and cubic metric) and BER performances.
Resumo:
This paper presents an adaptive frame length mechanism based on a cross-layer analysis of intrinsic relations between the MAC frame length, bit error rate (BER) of the wireless link and normalized goodput. The proposed mechanism selects the optimal frame length that keeps the service normalized goodput at required levels while satisfying the lowest requirement on the BER, thus increasing the transmission reliability. Numerical results are provided and show that an optimal frame length satisfying the lowest BER requirement does indeed exist. The performance of BER requirement as a function of the MAC frame length is evaluated and compared for transmission scenarios with and without automatic repeat request (ARQ). Furthermore, issues related to the MAC overhead length are also discussed to illuminate the functionality and performance of the proposed mechanism.
Resumo:
This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study
Resumo:
In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.
Resumo:
Recently, many chaos-based communication systems have been proposed. They can present the many interesting properties of spread spectrum modulations. Besides, they can represent a low-cost increase in security. However, their major drawback is to have a Bit Error Rate (BER) general performance worse than their conventional counterparts. In this paper, we review some innovative techniques that can be used to make chaos-based communication systems attain lower levels of BER in non-ideal environments. In particular, we succinctly describe techniques to counter the effects of finite bandwidth, additive noise and delay in the communication channel. Although much research is necessary for chaos-based communication competing with conventional techniques, the presented results are auspicious. (C) 2011 Elsevier B. V. All rights reserved.