996 resultados para Biomechanical foot model
Resumo:
Neuronal growth is a complex process involving many intra- and extracellular mechanisms which are collaborating conjointly to participate to the development of the nervous system. More particularly, the early neocortical development involves the creation of a multilayered structure constituted by neuronal growth (driven by axonal or dendritic guidance cues) as well as cell migration. The underlying mechanisms of such structural lamination not only implies important biochemical changes at the intracellular level through axonal microtubule (de)polymerization and growth cone advance, but also through the directly dependent stress/stretch coupling mechanisms driving them. Efforts have recently focused on modeling approaches aimed at accounting for the effect of mechanical tension or compression on the axonal growth and subsequent soma migration. However, the reciprocal influence of the biochemical structural evolution on the mechanical properties has been mostly disregarded. We thus propose a new model aimed at providing the spatially dependent mechanical properties of the axon during its growth. Our in-house finite difference solver Neurite is used to describe the guanosine triphosphate (GTP) transport through the axon, its dephosphorylation in guanosine diphosphate (GDP), and thus the microtubules polymerization. The model is calibrated against experimental results and the tensile and bending mechanical stiffnesses are ultimately inferred from the spatially dependent microtubule occupancy. Such additional information is believed to be of drastic relevance in the growth cone vicinity, where biomechanical mechanisms are driving axonal growth and pathfinding. More specifically, the confirmation of a lower stiffness in the distal axon ultimately participates in explaining the controversy associated to the tensile role of the growth cone.
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed
Resumo:
The mechanical response of the cornea subjected to a non-contact air-jet tonometry diagnostic test represents an interplay between its geometry, the corneal material behavior and the loading. The objective is to study this interplay to better understand and interpret the results obtained with a non-contact tonometry test. A patient-specific finite element model of a healthy eye, accounting for the load free configuration, was used. The corneal tissue was modeled as an anisotropic hyperelastic material with two preferential directions. Three different sets of parameters within the human experimental range obtained from inflation tests were considered. The influence of the IOP was studied by considering four pressure levels (10–28 mmHg) whereas the influence of corneal thickness was studied by inducing a uniform variation (300–600 microns). A Computer Fluid Dynamics (CFD) air-jet simulation determined pressure loading exerted on the anterior corneal surface. The maximum apex displacement showed a linear variation with IOP for all materials examined. On the contrary, the maximum apex displacement followed a cubic relation with corneal thickness. In addition, a significant sensitivity of the apical displacement to the corneal stiffness was also obtained. Explanation to this behavior was found in the fact that the cornea experiences bending when subjected to an air-puff loading, causing the anterior surface to work in compression whereas the posterior surface works in tension. Hence, collagen fibers located at the anterior surface do not contribute to load bearing. Non-contact tonometry devices give useful information that could be misleading since the corneal deformation is the result of the interaction between the mechanical properties, IOP, and geometry. Therefore, a non-contact tonometry test is not sufficient to evaluate their individual contribution and a complete in-vivo characterization would require more than one test to independently determine the membrane and bending corneal behavior.
Resumo:
This raster layer represents surface elevation and bathymetry data for the Boston Region, Massachusetts. It was created by merging portions of MassGIS Digital Elevation Model 1:5,000 (2005) data with NOAA Estuarine Bathymetric Digital Elevation Models (30 m.) (1998). DEM data was derived from the digital terrain models that were produced as part of the MassGIS 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has a floating point value, in meters, which represents its elevation above or below sea level.
Resumo:
The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution. The development of associated ear pathology, in particular the formation of retraction pockets, is also evaluated. To analyze these effects, a computational biomechanical model of the tympano-ossicular chain was constructed using computerized tomography images and based on the finite element method. Three fibers distributions in the eardrum middle layer were compared: case 1 (eardrum with a circular band of fibers surrounding all quadrants equally), case 2 (eardrum with a circular band of fibers that decreases in thickness in posterior quadrants), case 3 (eardrum without circular fibers in the posterior/superior quadrant). A static analysis was performed by applying approximately 3000Pa in the eardrum. The pars tensa of the eardrum was divided in four quadrants and the displacement of a central point of each quadrant analyzed. The largest displacements of the eardrum were obtained for the eardrum without circular fibers in the posterior/superior quadrant.
Resumo:
The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution. The development of associated ear pathology, in particular the formation of retraction pockets, is also evaluated. To analyze these effects, a computational biomechanical model of the tympano-ossicular chain was constructed using computerized tomography images and based on the finite element method. Three fibers distributions in the eardrum middle layer were compared: case 1 (eardrum with a circular band of fibers surrounding all quadrants equally), case 2 (eardrum with a circular band of fibers that decreases in thickness in posterior quadrants), case 3 (eardrum without circular fibers in the posterior/superior quadrant). A static analysis was performed by applying approximately 3000Pa in the eardrum. The pars tensa of the eardrum was divided in four quadrants and the displacement of a central point of each quadrant analyzed. The largest displacements of the eardrum were obtained for the eardrum without circular fibers in the posterior/superior quadrant.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Includes index.
Resumo:
Orthotic therapy is frequently advocated for the treatment Of musculoskeletal pain and injury of the lower limb. The clinical efficacy, mechanical effects, and Underlying mechanism of the action of foot orthotics has not been Conclusively determined making it difficult for practitioners to agree on a reliable and valid clinical approach to their application and indeed even their fabrication. This problem is compounded by evidence suggesting that the most commonly used approach for orthotic prescription, the (Biomechanical Evaluation of the Foot. Vol. 1. Clinical Biomechanics Corporation, Los Angeles, 1971) approach, has poor validity and many of the associated clinical measurements of that approach lack adequate levels of reliability. This paper proposes a new approach that is based on two key elements. One is the identification, verification and quantification of physical tasks that serve as client specific outcome measures. The second is the application of specific physical manipulations during the performance of these physical tasks. The physical manipulations are selected on the basis of motion dysfunction and their immediate effects on the client specific outcome measures serve as the basis to making an informed decision on the propriety of using orthotics in individual clients. The motion dysfunction also guides the type of orthotic that is applied. Practical case examples as well Lis generic and specific guidelines to the application of this clinical assessment process and orthotics are provided in this paper. (C) 2004 Published by Elsevier Ltd.
Resumo:
The objective was to describe the relationship between epidemiological and biomechanical factors in the causal pathway of inflatable rescue boat (IRB)-related injuries in Australian surf lifesavers; to develop epidemiological and biomechanical methodologies and measurement instruments that identify and measure the risk factors, for use in future epidemiological studies. Epidemiological and biomechanical models of injury causation were combined. Host, agent and environmental factors that influenced total available force for transfer to host were specified. Measurement instruments for each of the specified risk factors were developed. Instruments were piloted in a volunteer sample of surf lifesavers. Participant characteristics were recorded using demographic questionnaires; IRB operating techniques were recorded using a custom-made on-board camera (Grand RF-Guard) and images of operating techniques were coded by two independent observers. Ground reaction forces transmitted to the host through the lifesaver's feet at the time of wave impact were measured using a custom-built piezoelectric force platform. The demographic questionnaire was found practical; the on-board camera functioned successfully within the target environment. Agreement between independent coders of IRB operating technique images was significant (p < 0.001) with Kappa values ranging from 0.5 to 0.7. Biomechanical instruments performed successfully in the target environment. Peak biomechanical forces were 415.6N (left foot) and 252.9N (right foot). This study defines the relationship between epidemiological and biomechanical factors in modifying the risk of IRB-related injury in a population of surf lifesavers. Preliminary feasibility of combining epidemiological and biomechanical information has been demonstrated. Further testing of the proposed model and measurement instruments is required.
Resumo:
The aim of this randomised, controlled in vivo study in an ovine model was to investigate the effect of cylic pneumatic pressure on fracture healing. We performed a transverse osteotomy of the right radius in 37 sheep. They were randomised to a control group or a treatment group where they received cyclic loading of the osteotomy by the application of a pressure cuff around the muscles of the proximal forelimb. Sheep from both groups were killed at four or six weeks. Radiography, ultrasonography, biomechanical testing and histomorphometry were used to assess the differences between the groups. The area of periosteal callus, peak torsional strength, fracture stiffness, energy absorbed over the first 10° of torsion and histomorphometric analysis all showed that the osteotomies treated with the cyclic pneumatic pressure at four weeks were not significantly different from the control osteotomies at six weeks.
Resumo:
The effects of an experimental model of hydrogen-peroxide-induced foot pad oedema on indices of oxidative damage to biomolecules have been investigated. We have demonstrated increased levels of fluorescent protein and lipid peroxides occurring in plasma at 24 and 48 h post-injection. In addition, a decrease in the degree of galactosylation of IgG was observed which kinetically related the degree of inflammation and to the increase in protein autofluorescence (a specific index of oxidative damage). The effects of ebselen, a novel organoselenium compound which protects against oxidative tissue injury in a glutathione-peroxidase-like manner, have also been examined in this model. Pretreatment of animals with a dose of 50 mg/kg ebselen afforded significant and selective protection against lipid peroxidation only. This effect may contribute to the anti-inflammatory effect of this agent in hydroperoxide-linked tissue damage.