481 resultados para Biomaterial
Resumo:
Freestanding membranes created from Bombyx mori silk fibroin (BMSF) offer a potential vehicle for corneal cell transplantation since they are transparent and support the growth of human corneal epithelial cells (HCE). Fibroin derived from the wild silkworm Antheraea pernyi (APSF) might provide a superior material by virtue of containing putative cell- attachment sites that are absent from BMSF. Thus we have investigated the feasibility of producing transparent, freestanding membranes from APSF and have analysed the behaviour of HCE cells on this material. No significant differences in cell numbers or phenotype were observed in short term HCE cell cultures established on either fibroin. Production of transparent freestanding APSF membranes, however, proved to be problematic as cast solutions of APSF were more prone to becoming opaque, displayed significantly lower permeability and were more brittle than BMSF-membranes. Cultures of HCE cells established on either membrane developed a normal stratified morphology with cytokeratin pair 3/12 being immuno-localized to the superficial layers. We conclude that while it is feasible to produce transparent freestanding membranes from APSF, the technical difficulties associated with this biomaterial, along with an absence of enhanced cell growth, currently favours the continued development of BMSF as a preferred vehicle for corneal cell transplantation. Nevertheless, it remains possible that refinement of techniques for processing APSF might yet lead to improvements in the handling properties and performance of this material.
Resumo:
Modern cancer research requires physiological, three-dimensional (3-D) cell culture platforms, wherein the physical and chemical characteristics of the extracellular matrix (ECM) can be modified. In this study, gelatine methacrylamide (GelMA)-based hydrogels were characterized and established as in vitro and in vivo spheroid-based models for ovarian cancer, reflecting the advanced disease stage of patients, with accumulation of multicellular spheroids in the tumour fluid (ascites). Polymer concentration (2.5-7% w/v) strongly influenced hydrogel stiffness (0.5±0.2kPa to 9.0±1.8kPa) but had little effect on solute diffusion. The diffusion coefficient of 70kDa fluorescein isothiocyanate (FITC)-labelled dextran in 7% GelMA-based hydrogels was only 2.3 times slower compared to water. Hydrogels of medium concentration (5% w/v GelMA) and stiffness (3.4kPa) allowed spheroid formation and high proliferation and metabolic rates. The inhibition of matrix metalloproteinases and consequently ECM degradability reduced spheroid formation and proliferation rates. The incorporation of the ECM components laminin-411 and hyaluronic acid further stimulated spheroid growth within GelMA-based hydrogels. The feasibility of pre-cultured GelMA-based hydrogels as spheroid carriers within an ovarian cancer animal model was proven and led to tumour development and metastasis. These tumours were sensitive to treatment with the anti-cancer drug paclitaxel, but not the integrin antagonist ATN-161. While paclitaxel and its combination with ATN-161 resulted in a treatment response of 33-37.8%, ATN-161 alone had no effect on tumour growth and peritoneal spread. The semi-synthetic biomaterial GelMA combines relevant natural cues with tunable properties, providing an alternative, bioengineered 3-D cancer cell culture in in vitro and in vivo model systems.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
Tissue engineering technologies, which have originally been designed to reconstitute damaged tissue structure and function, can mimic not only tissue regeneration processes but also cancer development and progression. Bioengineered approaches allow cell biologists to develop sophisticated experimentally and physiologically relevant cancer models to recapitulate the complexity of the disease seen in patients. Tissue engineering tools enable three-dimensionality based on the design of biomaterials and scaffolds that re-create the geometry, chemistry, function and signalling milieu of the native tumour microenvironment. Three-dimensional (3D) microenvironments, including cell-derived matrices, biomaterial-based cell culture models and integrated co-cultures with engineered stromal components, are powerful tools to study dynamic processes like proteolytic functions associated with cancer progression, metastasis and resistance to therapeutics. In this review, we discuss how biomimetic strategies can reproduce a humanised niche for human cancer cells, such as peritoneal or bone-like microenvironments, addressing specific aspects of ovarian and prostate cancer progression and therapy response.
Resumo:
Cell adhesion receptors play a central role in sensing and integrating signals provided by the cellular environment. Thus, understanding adhesive interactions at the cell-biomaterial interface is essential to improve the design of implants that should emulate certain characteristics of the cell's natural environment. Numerous cell adhesion assays have been developed; among these, atomic force microscopy-based single-cell force spectroscopy (AFM-SCFS) provides a versatile tool to quantify cell adhesion at physiological conditions. Here we discuss how AFM-SCFS can be used to quantify the adhesion of living cells to biomaterials and give examples of using AFM-SCFS in tissue engineering and regenerative medicine. We anticipate that in the near future, AFM-SCFS will be established in the biomaterial field as an important technique to quantify cell-biomaterial interactions and thereby will contribute to the optimization of implants, scaffolds, and medical devices.
Resumo:
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Resumo:
Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.
Resumo:
Background Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopaedic surgeions and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. The present study has been designed in vivo to evaluate the effects of cellular auto-transplantation of tail vertebrae on healing of experimental critical bone defect in a dog model. Methods Six indigenous breeds of dog with 32 ± 3.6 kg average weight from both sexes (5 males and 1 female) received bilateral critical-sized ulnar segmental defects. After determining the health condition, divided to 2 groups: The Group I were kept as control I (n = 1) while in Group II (experimental group; n = 5) bioactive bone implants were inserted. The defects were implanted with either autogeneic coccygeal bone grafts in dogs with 3-4 cm diaphyseal defects in the ulna. Defects were stabilized with internal plate fixation, and the control defects were not stabilized. Animals were euthanized at 16 weeks and analyzed by histopathology. Results Histological evaluation of this new bone at sixteen weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. And also reformation cortical compartment and reconstitution of marrow space were observed at the graft-host interface together with graft resorption and necrosis responses. Finally, our data were consistent with the osteoconducting function of the tail autograft. Conclusions Our results suggested that the tail vertebrae autograft seemed to be a new source of autogenous cortical bone in order to supporting segmental long bone defects in dogs. Furthermore, cellular autotransplantation was found to be a successful replacement for the tail vertebrae allograft bone at 3-4 cm segmental defects in the canine mid- ulna. Clinical application using graft expanders or bone autotransplantation should be used carefully and requires further investigation.
Resumo:
Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.
Resumo:
Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.
Resumo:
Clinical utility of biodegradable magnesium implants is undermined by the untimely degradation of these materials in vivo. Their high corrosion rate leads to loss of mechanical integrity, peri–implant alkalization and localised accumulation of hydrogen gas. Biodegradable coatings were produced on pure magnesium using RF plasma polymerisation. A monoterpene alcohol with known anti-inflammatory and antibacterial properties was used as a polymer precursor. The addition of the polymeric layer was found to reduce the degradation rate of magnesium in simulated body fluid. The in vitro studies indicated good cytocompatibility of non-adherent THP–1 cells and mouse macrophage cells with the polymer, and the polymer coated sample. The viability of THP–1 cells was significantly improved when in contact with polymer encapsulated magnesium compared to unmodified samples. Collectively, these results suggest plasma enhanced polymer encapsulation of magnesium as a suitable method to control degradation kinetics of this biomaterial.
Resumo:
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Resumo:
Amongst various methods to attain sound antibacterial and antifouling properties, surface modification of biomaterials combines efficiency, processing flexibility, and most importantly, the ability to preserve favourable bulk properties, such as mechanical strength and chemical inertness. This chapter will first briefly discuss key parameters by which the biomaterial surface can be described, namely surface chemistry and morphology, and their individual and combined contributions to cell-surface interactions. More emphasis will be placed on surface morphology as the area of much debate. The chapter will then describe a range of available methodologies for surface modification, with plasma-assisted modification as one of the foci.
Resumo:
This doctoral thesis describes the development of a miniaturized capillary electrochromatography (CEC) technique suitable for the study of interactions between various nanodomains of biological importance. The particular focus of the study was low-density lipoprotein (LDL) particles and their interaction with components of the extracellular matrix (ECM). LDL transports cholesterol to the tissues through the blood circulation, but when the LDL level becomes too high the particles begin to permeate and accumulate in the arteries. Through binding sites on apolipoprotein B-100 (apoB-100), LDL interacts with components of the ECM, such as proteoglycans (PGs) and collagen, in what is considered the key mechanism in the retention of lipoproteins and onset of atherosclerosis. Hydrolytic enzymes and oxidizing agents in the ECM may later successively degrade the LDL surface. Metabolic diseases such as diabetes may provoke damage of the ECM structure through the non-enzymatic reaction of glucose with collagen. In this work, fused silica capillaries of 50 micrometer i.d. were successfully coated with LDL and collagen, and steroids and apoB-100 peptide fragments were introduced as model compounds for interaction studies. The LDL coating was modified with copper sulphate or hydrolytic enzymes, and the interactions of steroids with the native and oxidized lipoproteins were studied. Lipids were also removed from the LDL particle coating leaving behind an apoB-100 surface for further studies. The development of collagen and collagen decorin coatings was helpful in the elucidation of the interactions of apoB-100 peptide fragments with the primary ECM component, collagen. Furthermore, the collagen I coating provided a good platform for glycation studies and for clarification of LDL interactions with native and modified collagen. All methods developed are inexpensive, requiring just small amounts of biomaterial. Moreover, the experimental conditions in CEC are easily modified, and the analyses can be carried out in a reasonable time frame. Other techniques were employed to support and complement the CEC studies. Scanning electron microscopy and atomic force microscopy provided crucial visual information about the native and modified coatings. Asymmetrical flow field-flow fractionation enabled size measurements of the modified lipoproteins. Finally, the CEC results were exploited to develop new sensor chips for a continuous flow quartz crystal microbalance technique, which provided complementary information about LDL ECM interactions. This thesis demonstrates the potential of CEC as a valuable and flexible technique for surface interaction studies. Further, CEC can serve as a novel microreactor for the in situ modification of LDL and collagen coatings. The coatings developed in this study provide useful platforms for a diversity of future investigations on biological nanodomains.