986 resultados para Biomass concentration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10-30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonliving waste biomass consisting of Aspergillus niger attached to wheat bran was used as a biosorbent for the removal of copper and zinc from aqueous solutions. Copper and zinc uptake by the biomass obeyed Langmuir isotherms. The binding capacity of the biomass for copper was found to be higher than that for zinc. The metal uptake, expressed in milligrams per gram of biomass, was found to be a function of: the initial metal concentration (with the uptake decreasing with increasing initial concentration), the biomass loading (with the uptake decreasing with increasing biomass loading) and pH (with the uptake increasing with increasing pH in the range of 1.5 and 6.0). The metal uptake was significantly affected in the presence of a co-ion. The uptake of copper by the biomass decreased in the presence of zinc and vice versa. The decrease in metal uptake was dependent on the concentrations of metals in the two-component aqueous solutions. The effect of copper on zinc uptake was more pronounced than the effect of zinc on copper uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biomass yields of duck week (Lemna minor(L) was monitored in hydroponic media prepared by variously extracting 0.50, 1.00 and 2.00g of dried chicken manure per liter of city water (tap water) supply. The culture media consisting of aqueous extract of the various manure treatments were made up to 12 liters in all cases with tap water as control. Plastic baths of 25 liters capacity with 0.71 super(m2) surface area were used as culture facility. Each bath was stocked at a density of 30g super(m-2) with fresh weed samples (i.e 21.30g/bath). Maximum yields were obtained at all treatment levels and control on day 3 and based on the highest yield of 0.37gm super(-2)d super(-1) (dry matter) obtained at 1.00gL manure treatment which was however not significantly higher (P>0.05) than the 0.36gm super(-2)d super(-1) (dry matter) at 0.05gl super(-1) media manure content, an average manure level of 0.75l super(-1) was selected and used to determine the operational plant density. Thus fresh weights of 30 to 300gm super(-2) was grown in triplicate at 30g intervals for a period of 3 days. A regression equation of Y=2.6720+0.0021x with a corresponding maximum density or operational plant density of 266gm super(-2) and yield of 0.98gm super(-2), d super(-1) (dry matter) were obtained. Further growth trials were carried out at the operational density and manure levels of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00gl super(-1) media manure concentration giving a significantly higher yield (P<0.05) of 17gm super(-2), d super(-1) (dry matter). This yield was however doubled to between 2.21 and 2.24gm super(-2) d super(-1) (equivalent to 7.96 to 8.06mt.ha-1, Yr-1 dry matter on extrapolation) if 25% and 75% respectively of the total weed cover were harvested daily within the experimental period. The role of some dissolved plant nutrients (DPN) were also discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to indoor air pollution (IAP) from the combustion of biomass fuels is an important cause of morbidity and mortality in developing countries. In the work discussed in this paper we evaluated the endocrine activity of soot particles from biomass fuels by using yeast bioassay. These pollutants could have beta-galactosidase activity with a relative potency (RP) about 10(-7)-10(-9) that of estradiol. Soot particles from wood and straw combustion only partially induced beta-galactosidase activity whereas others produced fully inductive activity in the yeast assay system. These pollutants did not have estrogen antagonist and progesterone agonist activity within the defined concentration range. However, these pollutants require 2-4 orders of magnitude higher IC50 to inhibit the activity of progesterone in a similar dose-response manner to mifepristone. We therefore propose that the endocrine activity of some environmental pollutants may be because of inhibition of the progesterone receptor (hPR). GC-MS results showed that substituted polycyclic aromatic hydrocarbon (PAH) compounds, substituted phenolic compounds and derivatives, aromatic carbonyl compounds, and phytosteroids in these soot particles may be mimicking endogenous hormones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maps of surface chlorophyllous pigment (Chl a + Pheo a) are currently produced from ocean color sensors. Transforming such maps into maps of primary production can be reliably done only by using light-production models in conjuction with additional information about the column-integrated pigment content and its vertical distribution. As a preliminary effort in this direction. $\ticksim 4,000$ vertical profiles pigment (Chl a + Pheo a) determined only in oceanic Case 1 waters have been statistically analyzed. They were scaled according to dimensionless depths (actual depth divided by the depth of the euphotic layer, $Z_e$) and expressed as dimensionless concentrations (actual concentration divided by the mean concentration within the euphotic layer). The depth $Z_e$ generally unknown, was computed with a previously develop bio-optical model. Highly sifnificant relationships were found allowing $\langle C \rangle_tot$, the pigment content of the euphotic layer, to be inferred from the surface concentration, $\bar C_pd$, observed within the layer of one penetration depth. According to their $\bar C_pd$ values (ranging from $0.01 to > 10 mg m^-3$), we categorized the profiles into seven trophic situations and computed a mean vertical profile for each. Between a quasi-uniform profile in eutrophic waters and a profile with a strong deep maximum in oligotrophic waters, the shape evolves rather regularly. The wellmixed cold waters, essentially in the Antarctic zone, have been separately examined. On average, their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values of $ρ$, the ratio of Chl a tp (Chl a + Pheo a), have also been obtained for each trophic category. The energy stored by photosynthesizing algae, once normalized with respect to the integrated chlorophyll biomass $\langle C \rangle _tot $ is proportional to the available photosythetic energy at the surface via a parameter $ψ∗$ which is the cross-section for photosynthesis per unit of areal chlorophyll. By tanking advantage of the relative stability of $ψ∗.$ we can compute primary production from ocean color data acquired from space. For such a computation, inputs are the irradiance field at the ocean surface, the "surface" pigment from which $\langle C \rangle _tot$ can be derived, the mean $ρ value pertinent to the trophic situation as depicted by the $\bar C_pd or $\langle C \rangle _tot$ values, and the cross-section $ψ∗$. Instead of a contant $ψ∗.$ value, the mean profiles can be used; they allow the climatological field of the $ψ∗.$ parameter to be adjusted through the parallel use of a spectral light-production model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters. as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006-2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 142 and 1.27 mg m(-3), respectively. Conversely, in the winter and spring. the average Chl a levels were only 098 and 0.99 mg m(-3) Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the Surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients. temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions. hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of S-10, a strain of marine bacteria isolated from sediment in the Western Xiamen Sea, on the growth and paralytic shellfish poison (PSP) production in the alga Alexandrium tamarense (A. tamarense) was studied under controlled experimental conditions. The results of these experiments have shown that the growth of A. tamarense is obviously inhibited by S-10 at high concentrations, however no evident effect on its growth was observed at low concentrations. Its PSP production was also inhibited by S 10 at different concentrations, especially at low concentrations. The toxicity of this strain of A. tamarense is about (0.9512.14) x 10(-6) MU/cell, a peak toxicity value of 12.14 x 10(-6) MU/cell appeared on the 14th day, after which levels decreased gradually. The alga grew well in conditions of pH 6-8 and salinities of 20-34 parts per thousand. The toxicity of the alga varied markedly at different pH and salinity levels. Toxicity decreased as pH increased, while it increased with salinity and reached a peak value at a salinity of 30 parts per thousand, after which it declined gradually. S-10 at a concentration of 1.02 x 10(9) cells/ml inhibited growth and the PSP production of A. tamarense at different pH and salinity levels. S-10 had the strongest inhibitory function on the growth of A. tamarense under conditions of pH 7 and a salinity of 34 parts per thousand. The best inhibitory effect on PSP production by A. tamarense was at pH 7, this inhibitory effect on PSP production did not relate to salinity. Interactions between marine bacteria and A. tamarense were also investigated using the flow cytometer technique (FCM) as well as direct microscope counting. S-10 was identitied as being a member of the genus Bacillus, the difference in 16S rDNA between S-10 and Bacillus halmapalus was only 2%. The mechanism involved in the inhibition of growth and PSP production of A. tamarense by this strain of marine bacteria, and the prospect of using it and other marine bacteria in the biocontrol of red-tides was discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cruise was undertaken from 3rd to 8th November 2004 in Changjiang (Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton. Chlorophyll-a (Chl-a) concentration ranged 0.42-1.17 mu g L-1 and 0.41-10.43 mu g L-1 inside and outside the river mouth, with the mean value 0.73 mu g L-1 and 1.86 mu g L-1, respectively. Compared with the Chl-a concentration in summer of 2004, the mean value was much lower inside, and a little higher outside the river mouth. The maximal Chl-a was 10.43 mu g L-1 at station 18 (122.67 degrees E, 31.25 degrees N), and the region of high Chl-a concentration was observed in the central survey area between 122.5 degrees E and 123.0 degrees E. In the stations located east of 122.5 degrees E, Chl-a concentration was generally high in the upper layers above 5 m due to water stratification. In the survey area, the average Chl-a in sizes of > 20 mu m and < 20 mu m was 0.28 mu g L-1 and 1.40 mu g L-1, respectively. High Chl-a concentration of < 20 mu m size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton. Skeletonema costatum, Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water. The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a, as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells. Nitrate and silicate behaved conservatively, but the former could probably be the limitation factor to algal biomass at offshore stations. The distribution of phosphate scattered considerably, and its relation to the phytoplankton biomass was complicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll-a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003–04. Surface rates of carbon fixation ranged from <0.2-mmol C m−3 d−1 in the subtropical gyres to 0.2–0.5-mmol C m−3 d−1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll-a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50–70%) and chlorophyll-a (80–90%), nanoplankton (>2-μm) contributions to total carbon fixation (30–50%) were higher than to total chlorophyll-a (10–20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70–90%) and chlorophyll-a (70–90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2–3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll-a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the 1980s, a rapid increase in the Phytoplankton Colour Index (PCI), a semiquantitative visual estimate of algal biomass, was observed in the North Sea as part of a regionwide regime shift. Two new data sets created from the relationship between the PCI and SeaWiFS chlorophyll a (Chl a) quantify differences in the previous and current regimes for both the anthropogenically affected coastal North Sea and the comparatively unaffected open North Sea. The new regime maintains a 13% higher Chl a concentration in the open North Sea and a 21% higher concentration in coastal North Sea waters. However, the current regime has lower total nitrogen and total phosphorus concentrations than the previous regime, although the molar N: P ratio in coastal waters is now well above the Redfield ratio and continually increasing. Besides becoming warmer, North Sea waters are also becoming clearer (i.e., less turbid), thereby allowing the normally light-limited coastal phytoplankton to more effectively utilize lower concentrations of nutrients. Linear regression analyses indicate that winter Secchi depth and sea surface temperature are the most important predictors of coastal Chl a, while Atlantic inflow is the best predictor of open Chl a; nutrient concentrations are not a significant predictor in either model. Thus, despite decreasing nutrient concentrations, Chl a continues to increase, suggesting that climatic variability and water transparency may be more important than nutrient concentrations to phytoplankton production at the scale of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report evidences that the zooplankton biomass in the tropical Atlantic has declined with an almost 10-fold drop from the 1950s to 2000. The results of the multiple regression analysis showed that the decline in zooplankton biomass was positively related to the NAO-index and to phosphate concentration. We also found that the depth of the thermocline has decreased over the period of our investigation. Thus, the decline we report in zooplankton biomass may be related to the combined effect of two phenomena driven by global temperature increase: (1) the widening of the distributional range of tropical species due to the expansion of the ‘tropical belt’ and (2) a decrease in primary production resulting from the thinning of the thermocline. The decline of zooplankton biomass we report suggests that global warming of the ocean may be altering tropical food webs, and through them, it may also indirectly impact tropical oceans biogeochemical cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall aim of this work was to establish the optimum conditions for acid hydrolysis of hemicellulosic biomass in the form of potato peel. The hydrolysis reaction was undertaken in a 1l high pressure pilot batch reactor using dilute phosphoric acid. Analysis of the decomposition rate of hemicellulosic biomass (namely Cellulose, Hemicellulose and lignin) was undertaken using HPLC of the reaction products namely, 5 and 6 carbon sugars. Process parameters investigated included, reactor temperature (from 135 degrees C to 200 degrees C) and acid concentration (from 2.5% (w/w) to 10% (w/w)). Analysis of the reactor products indicated that high conversion of cellulose to glucose was apparent although arabinose conversion was quite low due to thermally un-stability. However, an overall sugar yield is 82.5% was achieved under optimum conditions. This optimum yield was obtained at 135 degrees C and 10% (w/w) acid concentration. 55.2 g sugar/100 g dry potato peel is produced after a time of 8 min. The work indicates that the use of potato peel may be a feasible option as a feed material for the production of sugars for biofuel synthesis, due its low cost and high sugar yields. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In normal populations of the common grass Holcus lanatus there is a polymorphism for arsenate resistance, manifested as suppressed phosphate uptake (SPU), and controlled by a major gene with dominant expression. A natural population of SPU plants had greater arbuscular-mycorrhizal colonization than wild type, nonSPU plants. It was hypothesized that, in order to survive alongside plants with a normal rate of phosphate (P) uptake, SPU plants would be more dependent on mycorrhizal associations. We performed an experiment using plants with SPU phenotypes from both arsenate mine spoils and uncontaminated soils, as well as plants with a nonSPU phenotype. They were grown with and without a mycorrhizal inoculum and added N, which altered plant P requirements. We showed that grasses with SPU phenotypes accumulated more shoot P than nonSPU plants, the opposite of the expected result. SPY plants also produced considerably more flower panicles, and had greater shoot and root biomass. The persistence of SPU phenotypes in normal populations is not necessarily related to mycorrhizal colonization as there were no differences in percentage AM colonization between the phenotypes. Being mycorrhizal reduced flower biomass production, as mycorrhizal SPU plants had lower shoot P concentrations and produced fewer flower panicles than non-mycorrhizal, nonSPU plants. We now hypothesize that the SPU phenotype is brought about by a genotype that results in increased accumulation of P in shoots, and that suppression of the rate of uptake is a consequence of this high shoot P concentration, operating by means of a homeostatic feedback mechanism. We also postulate that increased flower production is linked to a high shoot P concentration. SPU plants thus allocate more resources into seed production, leading to a higher frequency of SPU genes. Increased reproductive allocation reduces vegetative allocation and may affect competitive ability and hence survival, explaining the maintenance of the polymorphism. As mycorrhizal SPU plants behave more like nonSPU plants, AM colonization itself could play a major part in the maintenance of the SPU polymorphism.